インダクションモーターとは
インダクションモーターとは、交流電流で作動するモーターで電磁誘導によって生じる力を動力に回転するモーターです。
そのため、交流を意味するACを冠してACモーターとも呼ばれます。インダクションモーターは、最も歴史のあるモーターの一つで、単純な構造で特別な電力の変換を行わず、交流電源につなぐだけで動作します。
そのため、高い信頼性と長寿命を併せ持っており、現在でも広く使用されているモーターです。また、レアメタルを含む磁石を使用しないので、低コストで高効率な回転が得られることもメリットの一つです。
インダクションモーターの使用用途
インダクションモーターは、大容量化するほど高効率になるという特性があることから、洗濯機や扇風機など家電製品から工場設備の大型生産設備に至るまで、幅広く使用されています。
また、モーターの特性を変えることで、自動ドアのように大きな起動トルクを必要とするものの動力源として利用されたり、シュレッダーのように高い停動トルクを必要とするものに利用されたりしています。
インダクションモーターの原理
図1. インダクションモーターの原理
インダクションモーターは交流電流の違いによって三相モーターと単相モーターの2つに大別されます。
1. 三相モーター
インダクションモーターは、ステータと呼ばれる「固定子」と回転子である「ロータ」によって構成されています。固定子には三相交流を流すコイル巻線があり、ロータには回転磁界からの電磁誘導による電流を流すカゴ型の配線が組込まれていて、固定子に三相交流電流を流すと回転磁場が生じます。
この磁場が導体であるロータ内に組込まれたカゴ型配線を通過するとき、電磁誘導に従った電圧が生じます。これによってカゴ型配線に電流が流れ、固定子からの回転磁場が相互作用することでトルクが得られるという仕組みです。ロータの回転は、固定子が発生する回転磁界速度に漸近しますが決して等しくはなりません。
このときのロータと固定子の回転磁界速度の比を「すべり」と呼び、インダクションモーターのトルク特性を決定する大きな一つの要素です。
2. 単相モーター
単相交流でモータを回転させるためには、回転磁界を発生させる必要があります。そこでコンデンサをモータの補助巻線に組み込んで、主巻線は電源に直接つなぎ、補助巻線はコンデンサ経由で電源をつなぐことで回転磁界を発生させます。
単相交流を主巻線、コンデンサを介して補助巻線につなぐと、補助巻線の電流は主巻線の電流に対して、90°進んだ電流が流れます。これら90°ずれた2つの電流が回転磁界を生み、モータは回転力を得ることができます。
インダクションモーターのその他情報
1. インダクションモーターの回転数
インダクションモーターの定格回転速度は、以下の式で導かれます。
N(rpm) = 120/p(極数) × f(Hz)
この時、pがモーターの極数、fは電源周波数です。極数が少ないほどモーターの回転速度は速くなり、電源周波数が高いほど回転速度も速くなります。日本の商用電源は西日本が60Hz、東日本が50Hzと決まっているため、商用電源でモーターを動かそうとすると、極数に応じた定格回転速度となります。
また、インダクションモーターには滑りが存在し、負荷トルクに応じて回転速度が少しずつ小さくなっていき、実回転数は、滑りをsとすると以下となります。
N(1-s) (rpm)
2. インダクションモーターの速度制御
図2. インダクションモーターの速度制御
インダクションモーターの定格回転数は先述したように、電源周波数と極数に応じて決まります。ただし、モーターの種類や電源によっては、回転速度を変更することができます。インダクションモーターの速度制御は、以下のような方法で実施されます。
ポールチェンジモーターの使用
ポールチェンジとは、極数を結線方法によって決めることができるモーターです。モーター自体が大型化し、汎用性も低くなるというデメリットがあります。また、極数に応じて段階的にしか回転速度を変化させることができません。
巻線型モーターの抵抗制御
巻線型のインダクションモーターを使用することで、速度制御が可能となります。原理としては、ロータの配線をカゴ型配線ではなく、コイル巻線にしたモータで、その巻線 (二次巻線) に抵抗を介した電流を流すことで滑りが大きくなり、速度を定格からさらに遅くすることが可能です。ただし、抵抗器が必要となるというデメリットもあります。
また、回転しているロータ巻線に電流をながすためのスリップリングを別途必要とするため、部品点数も増え、保守費用も増加してしまいます。抵抗から熱を発するため、エネルギーロスも多大です。
流体継手による回転速度制御
流体継手という、油圧を介して駆動軸と従動軸を繋ぐ継手を使用することで、起動時などスムーズな加速を得ることができます。
流体を介して駆動軸と従動軸を繋いでいるため、負荷変動が大きい場合には流体継手がその変動を吸収します。ただし、リジッドに駆動軸と従動軸を繋いでいないため、油が攪拌され、油が昇温しロスが発生することがデメリットです。
インバータによる回転速度制御
図3. インバータによる回転速度制御
現在、インダクションモーターの速度制御はインバータを使用するものが一般的です。固定電圧・固定周波数である三相交流電源をIGBTなどのパワーデバイスを用いた三相ブリッジをスイッチングして制御し、モーターの回転速度を変化させます。周波数と共に電圧を変化させることで、トルクを一定にして駆動させることが可能です。
エネルギー損失も、半導体技術・制御技術の向上により、駆動エネルギーの数%と極めて優秀であり、SDGsが盛んに叫ばれている現在、インダクションモーターの回転速度制御として最も広く用いられています。
参考文献
https://www.nidec.com/jp/technology/motor/basic/00026/
https://web-material3.yokogawa.com/19/15398/tabs/rd-tr-r04502-005.jp.pdf