カテゴリー
category_usa

Conveyor Pulley

What Is a Conveyor Pulley?

A conveyor pulley is a disc-shaped component used in belt conveyors to transmit power from the belt.

In a belt conveyor system, the conveyor belt operates as the drive pulley, which functions like a pulley to move the conveyor belt. There are various types of pulleys that play different roles, such as changing the direction of the belt or pulling it, and the belt conveyor operates through multiple pulleys positioned at key points of the belt conveyor system.

Uses of Conveyor Pulleys

Conveyor pulleys are primarily used in belt conveyor operations. Industries where conveyor pulleys are commonly used include:

  • Steel and Coke
  • Quarrying (Crushing Stones)
  • Cement and Ready-Mix Concrete
  • Asphalt
  • Civil Engineering
  • Thermal Power Plants
  • Recycling
  • Water Treatment
  • Logistics
  • Paper and Pulp

Additionally, pulleys themselves are used in various devices beyond belt conveyors, such as car engines, agricultural machinery, compressors, pumps, and office automation equipment.

Principle of Conveyor Pulleys

Overview

The main components of a conveyor pulley include the shaft, bearing, end disc (side plate), hub, and shell (outer ring).

The shell makes contact with the belt, while the end discs support it on both sides. The shaft rotates, transmitting power to the hub and end discs, causing the outer ring to rotate and move the conveyor belt. The bearing supports the shaft, ensuring it remains in the correct position.

Shell Processing

During belt conveyor operation, the conveyor belt and pulley can become misaligned. To prevent such occurrences, the pulley shell may undergo crown processing, where the diameter of the central part of the outer ring is made larger than that of the ends. Additionally, the surface may be coated with rubber (lining processing).

Types of lining processing include:

  • Horizontal Grooves
  • Double Helical Type (grooves angled toward the center)
  • Diamond Type

The double helical type is highly effective in increasing friction with the belt and preventing foreign matter from entering. The diamond type features a larger rubber surface area in contact with the belt, enhancing friction and bearing larger surface pressure. Unlike the double helical type, it also easily accommodates bidirectional operation.

Types of Conveyor Pulleys

Overview

Conveyor pulleys primarily include:

  • Drive Pulley (Head Pulley): Drives the belt conveyor
  • Snub Pulley: Increases the wrap angle of the belt around the pulley
  • Tail Pulley: Located at the tail of the conveyor
  • Tension Pulley: Pulls the belt
  • Bend Pulley: Changes the direction of the belt

Each type has its role, and selecting the appropriate one depends on factors such as the length of the conveyor and the type of material being transported.

Head Pulley / Tail Pulley

Belt conveyors have a head (drive side) and a tail. The pulley at the head is called the head pulley, while the one at the tail is called the tail pulley.

The pulley that drives the conveyor is known as the drive pulley, and it is generally the head pulley. However, in some cases, the head pulley and drive pulley are separate in belt conveyors.

Tension Pulley, Bend Pulley, and Snub Pulley

The tension pulley maintains the tension of the conveyor belt, preventing deviation or skewing. The bend pulley changes the direction of the conveyor belt. The snub pulley increases the wrap angle of the conveyor belt around the pulley, preventing the belt from slipping or sagging.

Selecting Pulley Size

The appropriate size of the pulley is closely related to the selection of the conveyor belt. For example, rubber conveyor belts typically require pulleys with larger diameters compared to resin conveyor belts. Additionally, the greater the tension on the conveyor belt, the larger the pulley diameter required.

A smaller pulley diameter causes the conveyor belt to bend more sharply. The sharper the belt bends, the greater the stress on the belt, increasing the likelihood of belt joints coming apart or detaching. If the pulley diameter is smaller than required, the belt may slip at the pulley. Larger pulley diameters reduce the bending degree of the conveyor belt, thereby minimizing stress and extending belt life. However, larger diameters generally increase the manufacturing cost of the pulley.

カテゴリー
category_usa

Bearing Temperature Sensor

What Is a Bearing Temperature Sensor?

A bearing temperature sensor is a temperature sensor used to measure the temperature of bearings and detect abnormalities.

Bearings typically increase in temperature after the start of operation, reaching a steady state at a temperature 10 to 40°C higher than the ambient temperature after a certain period. If the bearing temperature does not stabilize and continues to rise abnormally, it indicates a malfunction that needs to be addressed. Bearing temperature sensors are used to detect such malfunctions early. Particularly critical bearings often use temperature sensors to prevent damage like seizure, which can lead to equipment downtime.

Uses of Bearing Temperature Sensors

Overview

Bearing temperature sensors are used to monitor the temperature of bearings in various machines. By measuring the internal temperature of bearings, they help quickly detect abnormal temperature rises, enabling rapid detection of malfunctions and prevention of accidents.

Uses of Bearings

Bearings are mechanical components used to support rotating bodies such as shafts smoothly and accurately. They are also known as bushings. Bearings are widely used in industrial machinery, automobiles, aircraft, railway vehicles, household appliances, and other industrial products.

In particular, in piston engines like diesel engines, bearings support the crankshaft at the correct position, allowing it to rotate within the engine block (main bearing). Diesel engines are used in various applications, including ships, power generation, and industrial uses.

Principle of Bearing Temperature Sensors

Causes of Abnormal Temperature Rise in Bearings

Bearings start to gradually increase in temperature as soon as they begin to operate, typically reaching a steady state after 1-2 hours. The normal temperature of bearings depends on the machine’s heat capacity, heat dissipation, speed, and load. If there is a malfunction, the bearing temperature will rise rapidly and become abnormally high. Common causes of abnormal temperature rise include:

  • Extreme shortage or excess of lubricant, or inappropriate lubricant
  • Improper installation of the bearing
  • Insufficient internal clearance of the bearing or excessive load
  • Excessive friction in the sealing device
  • Creep on the fitting surface

Mechanism of Bearing Temperature Sensors

Bearing temperature sensors can estimate the internal temperature of the bearing by measuring the temperature outside the bearing chamber or directly measure the outer ring temperature of the bearing using oil holes. Some products can be directly screwed into the grease nipple mounting hole of the bearing.

The sensor mechanism for detecting temperature includes thermocouples and resistance temperature detectors (RTDs). A thermocouple is a temperature sensor that uses the electromotive force generated by the temperature difference between two connected metals. Thermistors and RTDs measure temperature by correlating material resistance with temperature. Thermistors are characterized by their ability to measure within a narrow temperature range with high sensitivity and small size. RTDs, on the other hand, can cover a wide temperature range with good linearity but are less sensitive than thermistors.

Types of Bearing Temperature Sensors

Various bearing temperature sensors are available on the market, with different operating temperature ranges, such as -40 to 105°C, -15 to 60°C, and up to 1200°C. Some products can sound an alarm at a specified temperature.

For diesel engines, bearing temperature sensors can be paired with lubricant oil sensors that measure the temperature of the oil rising to the piston crown, allowing for comprehensive temperature monitoring. Some products offer complete wireless capabilities through wireless communication and self-powering systems, and others are powered by lithium batteries.

Additionally, there are sensors that can simultaneously measure vibration speed, acceleration envelope, and temperature, as well as sensors that can communicate with tablets, smartphones, or smartwatches via Bluetooth. Many products are also equipped for cloud integration. Given their use in harsh industrial conditions, many sensors meet standards for waterproofing, dustproofing, fire resistance, and explosion proofing.

カテゴリー
category_usa

Wireless Charging and Monitoring Device

What Is a Wireless Charging and Monitoring Device?

A wireless charging and monitoring device is equipment that charges various devices (provides power) and monitors the charging status and battery condition without the need for wired connections through metal contacts such as terminal connections.

Wireless charging is used in a wide range of applications, from personal devices like smartphones and wearable devices to industrial equipment such as sensors, AGVs (automated guided vehicles), collaborative robots, and automated transport carts. The advantages include eliminating the need to plug and unplug power cables, reducing issues related to cable breakage, and avoiding connector wear and tear. In industrial applications, the absence of metal contacts also eliminates the risk of electric shock, greatly enhancing safety.

Uses of Wireless Charging and Monitoring Devices

Wireless charging and monitoring devices are used for wireless charging of various devices, both residential and industrial. Major applications include:

  • Smartphones
  • Wearable devices
  • Industrial sensors such as temperature and pressure sensors
  • AGVs (automated guided vehicles) and automated transport carts
  • Industrial robots like collaborative robots

In particular, introducing wireless charging to AGVs allows automatic charging during downtime when the AGV is stopped for loading and unloading tasks, thereby efficiently utilizing standby time. The lack of metal contacts also removes the risk of accidents due to sparks or electric shocks, and reduces labor costs associated with charging tasks, thereby contributing to increased productivity.

Principle of Wireless Charging and Monitoring Devices

Overview

Wireless power transfer methods are broadly classified into two types: “radiative” and “coupling (non-radiative).”

“Radiative” methods use light such as laser beams or radio waves such as microwaves. These are suitable for long-distance power transmission but are currently limited to research stages due to significant energy loss and poor transmission efficiency.

“Coupling” methods efficiently transfer power over short distances and are the types currently being implemented. Coupling methods can be further divided into systems using magnetic fields and those using electric fields as the medium for power transfer.

Electromagnetic Induction Method

The electromagnetic induction method generates charging by creating an induced magnetic flux between the transmitting and receiving sides. When two coils are brought close together and an electric current flows through one coil, an electromotive force is generated in the other coil via the magnetic flux passing through the coils. This method is one of the most common for wireless charging due to its compact size and low cost.

However, the transmission distance is short, and charging cannot occur if there is misalignment between the transmitting and receiving sides.

Magnetic Resonance Method

The magnetic resonance method generates power for charging by resonating the magnetic field resonators of the transmitting and receiving sides. This method allows charging over longer distances compared to the electromagnetic induction method, and can transfer power over several meters. It is mainly being researched for charging electric vehicles.

Electric Field Coupling Method

The electric field coupling method uses electrodes placed facing each other between the transmitting and receiving sides. This forms a capacitor, and when high-frequency electricity flows through one side, electricity also flows through the electrode on the other side. This phenomenon is utilized for charging in the electric field coupling method.

While the transmission distance is short, similar to the electromagnetic induction method, this method is less affected by misalignment.

Types of Wireless Charging and Monitoring Devices

Various products are available for wireless charging and monitoring devices.

By application, there are charging devices for small devices like smartphones, equipment for transport vehicles like AGVs, and devices for industrial sensors. Additionally, wireless charging systems for electric vehicles are being developed, with demonstration tests being conducted for systems that transfer power non-contactly from ground-installed transmitting coils to receiving coils in EVs.

Wireless charging devices for industrial sensors may include features that allow real-time monitoring of temperature, pressure, signal power rate, sensor name, and charging level simultaneously with charging. Some products also come with waterproof and dustproof structures.

カテゴリー
category_usa

Solar Panel Efficiency Monitoring Device

What Is a Solar Panel Efficiency Monitoring Device?

A solar panel efficiency monitoring device is a machine used to monitor the performance of solar panels in a photovoltaic system.

There are various types of products with different operating mechanisms, including devices that directly monitor solar panels, measurement instruments called CT sensors, and devices that directly obtain data from power conditioners. By using a solar panel efficiency monitoring device, it is possible to quickly respond to any issues in solar power generation, thereby enhancing generation efficiency.

Uses of Solar Panel Efficiency Monitoring Devices

The primary use of solar panel efficiency monitoring devices is to measure data such as power generation and provide information to determine whether the system is operating correctly. Some products, when used in combination with an internet connection, allow users to easily check the power generation status remotely from a computer or smartphone.

These functions enable effective maintenance and efficient operation of solar power generation facilities.

Principle of Solar Panel Efficiency Monitoring Devices

Overview

Solar panel efficiency monitoring devices mainly use systems that obtain data from power conditioners and systems that measure current values through wiring using measurement instruments like CT sensors.

Power Conditioner Monitoring Type

The power conditioner monitoring type of solar panel efficiency monitoring devices communicates with power conditioners equipped with communication functions via communication methods such as RS485 or TCP/IP to monitor the power generation status.

This allows for the acquisition of information such as the amount of power generated by each circuit (string) and the monitoring of power conditioner operation and faults. In the event of a power generation stoppage, it can also identify and predict the cause.

However, disadvantages include high installation costs, limited compatible power conditioners, and the inability to obtain data if the power conditioner’s communication infrastructure is faulty, even if power is being generated.

Current Measurement Type (CT Sensor Type)

Solar panel efficiency monitoring devices that use measurement instruments like CT sensors monitor by attaching the instruments to the wires that transmit power to the electrical grid, measuring voltage, current values, and power generation. CT in CT sensors stands for Current Transformer. Since it is attached directly to the wiring, it can be installed regardless of the type of power conditioner and can monitor each panel by installing it on each one. Another characteristic is that it is relatively cheaper to install compared to the power conditioner monitoring type.

Disadvantages include difficulties in pinpointing the cause of power generation decreases due to only measuring AC current values, making it hard to determine if the issue is due to abnormalities or weather conditions, and measurement errors compared to the actual power generation since current values are measured from the wiring.

Types of Solar Panel Efficiency Monitoring Devices

Various manufacturers offer a wide range of solar panel efficiency monitoring devices. Depending on the application, products are available for large-scale commercial use, such as power plants, as well as for residential use.

Some products feature unique functions, such as detecting user-defined percentage deviations from the average values within multiple strings and comparing power among strings, allowing for panel-based monitoring. This makes it possible to specifically detect and report individual panel faults. Other examples include:

  • Residential products with easy-to-read measurement display panels
  • Products that display self-sufficiency rates and CO2 reduction amounts in conjunction with home power consumption measurement
  • Products designed for large-scale monitoring with excellent multi-site monitoring and cloud integration
  • Products that are highly compatible with multiple devices such as PCs, smartphones, and tablets

Selecting the appropriate product based on the application is essential.

カテゴリー
category_usa

Wireless Control Relay

What Is a Wireless Control Relay?

A wireless control relay is a relay device that receives electrical signals and outputs digital signals to control machinery, using wireless communication methods such as Bluetooth.

Control relays receive external electrical signals and perform tasks like turning electrical circuits on/off or switching them. They relay input signals from sensors or push buttons to other devices. Communication methods vary by product, including Wi-Fi, Bluetooth, and sub-GHz band wireless. These relays are used in various industrial scenarios where wired installation is difficult or in coordination with wireless sensors.

Uses of Wireless Control Relays

Overview

Wireless control relays are used to receive signals wirelessly from sensors and push-button switches and control other devices or processes wirelessly. Specific applications include:

  • Controlling industrial processes in conjunction with wireless temperature or pressure sensors
  • Smart home automation
  • Eliminating wiring in manufacturing and conveyance processes in factories

Applications in Manufacturing

In manufacturing, wireless control relays are used with sensors and switches in the following ways:

  • Efficient transmission of trouble alerts
  • Efficient reporting of task completion
  • Switching the direction of conveyor belts
  • Wire-free layouts allowing flexible layout changes
  • Remote operation of forklift communication and shutter control
  • Counting inspection results and distinguishing between good and defective products
  • Activating AGVs (Automated Guided Vehicles) for parts transport
  • Indicating vehicle entry and exit

Principle of Wireless Control Relays

Overview and Wireless Communication

A relay is a component that receives external electrical signals and controls the on/off or switching of electrical circuits. Wireless control relays use various wireless communication methods, such as Wi-Fi, low-power radio, Lora, LoRaWAN, and Bluetooth, for communication with sensors and target devices. The suitable data communication method is selected based on the product and application. For example, LoRaWAN offers excellent reception sensitivity and resistance to radio interference, enabling communication distances of over 10 km in ideal environments, making it suitable for wide-area operations.

Wireless control relays, like traditional relays, come in two types: mechanical contact relays and solid-state relays.

Mechanical Contact Relays

Mechanical contact relays operate by mechanically moving contacts to output a contact signal. They are composed of components like electromagnetic coils and contacts and are also known as electromechanical relays due to their operating principle.

When an input voltage signal is received, the internal electromagnetic coil is energized, acting as an electromagnet and moving the movable contact with the movable iron piece. The movable contact touches or separates from the fixed contact, outputting an electrical contact signal.

Solid-State Relays

Solid-state relays have no mechanical moving parts like contact relays and are composed of semiconductors and electronic components like triacs and MOSFETs. They electronically switch signals or currents/voltages on and off using these electronic circuits.

Types of Wireless Control Relays

Wireless control relays come in various types. In addition to the operational mechanisms of contact and solid-state relays, there are different types of contact configurations and output methods. The types of contacts include:

  • Form A (Normally Open) Contact: Activated by the input signal
  • Form B (Normally Closed) Contact: Deactivated by the input signal
  • Form C (Transfer) Contact: Combines Form A and Form B, with each operating inversely to the input signal

Functionally, there are products designed to work with wireless pressure sensors or temperature sensors, products with integrated push-button switches, and products intended for smart home applications. The hardware aspects, such as operating temperature, vary by product. Products with an IP54 waterproof rating, for example, can be used in wet environments or outdoors.

カテゴリー
category_usa

Wireless Pressure Sensor

What Is a Wireless Pressure Sensor?

A wireless pressure sensor measures pressures, such as gauge pressure, in factories and plants without needing wired connections for power or communication.

In many industrial settings, it is essential to measure and manage the pressure of gases and liquids, including gauge pressure, sealed gauge pressure, and differential pressure. Traditional wired pressure sensors require long power cables and can have installation limitations. Wireless pressure sensors eliminate these restrictions, allowing for installation in desired locations. The power sources are mainly divided into battery-powered and self-powered types. Additionally, some products are used in educational settings for scientific experiments.

Uses of Wireless Pressure Sensors

Wireless pressure sensors are used in various industrial applications, including power plants, chemical plants, oil refineries, and food processing facilities.

Many industrial processes involve the use of pressurized gases or pressurized containers. Monitoring pressure is crucial as pressurized leaks or container expansions can disrupt the safe operation of manufacturing processes. Primary uses include:

  • Online and remote gauge monitoring
  • Valve leakage monitoring
  • Monitoring pipeline and filter blockages
  • Measuring gas and liquid flow rates
  • Tank level measurement
  • Monitoring gas and liquid filters
  • Process control in factories

Wireless pressure sensors are also used in educational settings for various physics and chemistry experiments, such as Boyle’s law and measuring pressure inside balloons.

Principle of Wireless Pressure Sensors

Measurement Mechanism

Wireless pressure sensors measure the pressure of gases or liquids via a diaphragm and convert it into an electrical signal using a pressure-sensitive element.

A semiconductor piezoresistive diffusion pressure sensor forms a semiconductor strain gauge on the diaphragm’s surface. The diaphragm deforms under pressure, causing a change in electrical resistance due to the piezoresistive effect, which is then converted into an electrical signal. The piezoresistive effect is the change in electrical resistivity caused by applied stress, different from the piezoelectric effect, which is the polarization phenomenon caused by stress.

A capacitive pressure sensor forms a capacitor with a fixed glass electrode and a movable silicon electrode. The change in capacitance due to the deformation of the movable electrode under pressure is converted into an electrical signal.

Power Source

Wireless pressure sensors come in battery-powered and self-powered or energy-harvesting types. Battery-powered types use various batteries like button cells, AA, AAA, and lithium batteries.

Self-powered types do not require batteries and operate by collecting waste energy from surrounding heat, vibration, etc. Energy sources include temperature differences, vibrations, sunlight, and magnetic fields. This eliminates the need for battery maintenance and reduces operational costs.

Data Transmission

Wireless pressure sensors use various wireless communication methods for data transmission to data loggers, such as Wi-Fi, Zigbee, Lora, LoRaWAN, and Bluetooth. The suitable data communication method is chosen depending on the product and application. For instance, LoRaWAN offers excellent reception sensitivity and resistance to radio interference, allowing for communication distances of over 10 km in ideal environments, making it suitable for wide-area operations. Additionally, some products enable status checking via smartphones.

Types of Wireless Pressure Sensors

Overview

Wireless pressure sensors come in various types, each with different specifications and features. The pressure range, durability, and suitable applications vary by product, so it is necessary to select the appropriate one based on the intended use.

Data Management

Some products allow data to be saved in CSV format for statistical maintenance and management of equipment. Products with mechanical pressure gauges equipped with pressure sensors and communication modules enable pressure readings on-site even when communication is unavailable. Sampling intervals vary by product, from 0.1-second units to minute units, and some offer real-time data display.

Waterproof and Dustproof

Products with an IP65 waterproof rating can be used in wet environments or outdoors. While many products are unsuitable for corrosive gases and fluids, some can measure contaminated water, steam, and slightly corrosive fluids.

Products with explosion-proof certification can be installed in hazardous areas handling flammable gases, such as petrochemical plants, paint factories, and chemical plants.

カテゴリー
category_usa

Wireless Temperature Sensor

What Is a Wireless Temperature Sensor?

A wireless temperature sensor is a device that measures temperatures, such as those in pipelines, without the need for wired connections like power cables.

Traditional wired temperature sensors often require long power cables and can have installation limitations. Wireless temperature sensors eliminate these restrictions, allowing for installation in desired locations. They are used in industrial applications for monitoring pipeline temperatures, internal concrete temperatures, and other temperature-related monitoring. Additionally, they are used in educational settings for science experiments. The power sources are mainly divided into battery-powered and self-powered types.

Uses of Wireless Temperature Sensors

The primary use of wireless temperature sensors is for temperature monitoring in industrial applications. Main uses include:

  • Measuring pipeline temperatures
  • Monitoring machinery conditions (e.g., pumps, motors, compressors, gearboxes in process industries and semiconductor plants)
  • Measuring internal concrete temperatures
  • Temperature monitoring in retail and food industries (e.g., supermarkets, greenhouses, cold storage rooms, aquaculture facilities, refrigerated trucks)

Specifically, pipeline temperature and machinery condition monitoring are applicable in a wide range of industries such as power plants, chemical plants, oil refineries, and food processing facilities.

Wireless temperature sensors are also utilized in educational settings. Temperature-related science topics are covered from elementary to high school levels, allowing for various uses. They are employed in various experiments, including supercooling, distillation, and heat of neutralization, and waterproof models can be used outdoors.

Principle of Wireless Temperature Sensors

Measurement Mechanism

Wireless temperature sensors detect temperatures using common temperature sensors like thermocouples, thermistors, and resistance temperature detectors (RTDs). A thermocouple is a temperature sensor that uses the electromotive force generated by connecting two different metals with a temperature difference. Thermistors and RTDs measure temperature by correlating material resistance with temperature.

Thermistors are characterized by their ability to measure narrow temperature ranges with high sensitivity and small size, while RTDs cover wide temperature ranges with good linearity but lower sensitivity than thermistors. There are two types of thermistors: NTC thermistors, which decrease in resistance linearly with temperature increase, and PTC thermistors, which increase in resistance non-linearly with temperature increase. Common materials used are semiconductor ceramics primarily composed of metal oxides such as nickel, cobalt, manganese, and iron. RTDs mainly use platinum, nickel, and copper.

Power Source

Wireless temperature sensors come in battery-powered and self-powered or energy-harvesting types. Battery-powered types use various batteries like CR2032 button cells, AA, AAA, and lithium batteries.

Self-powered types do not require batteries and operate by collecting waste energy from surrounding heat, vibration, etc. Energy sources include temperature differences, vibrations, sunlight, and magnetic fields. This eliminates the need for battery maintenance and reduces operational costs.

Data Transmission

Wireless temperature sensors use various wireless communication methods for data transmission to data loggers, such as Wi-Fi, Zigbee, Lora, LoRaWAN, and Bluetooth. The suitable data communication method is chosen depending on the product and application. For instance, LoRaWAN offers excellent reception sensitivity and resistance to radio interference, allowing for communication distances of over 10 km in ideal environments, making it suitable for wide-area operations.

Types of Wireless Temperature Sensors

Wireless temperature sensors come in various types, as mentioned earlier. They are categorized based on application, such as industrial pipeline measurement, machinery measurement, and scientific experiments in educational institutions.

The temperature measurement range varies by product, so selecting the appropriate one is necessary. Measurement intervals also vary by product, and some offer real-time data display. Products with IP66/IP67 waterproof ratings can be used in wet environments or outdoors.

Moreover, some products have explosion-proof certification, allowing installation in hazardous areas handling flammable gases, such as petrochemical plants, paint factories, and chemical plants.

銘板シール

監修:株式会社フォーワテック・ジャパン

銘板シールとは

銘板シールとは、製品の名称や仕様などの情報を貼り付けるシールです。

銘板シールには製品や機械の型番、製造元、製造年月日などの重要な情報を明示します。これにより、製品の特定や追跡が容易です。メンテナンスや修理が必要な場合に、どの部品を使用していたかを素早く確認できます。

また、使用上の注意や警告などの情報を提供することで、製品の安全な使用を促進します。例えば、機械の操作手順や電気的な警告などを明記することで、誤操作や事故のリスクを減少させることが可能です。また、定期的なメンテナンスやチェックポイントも明示できるため、より安全に運用できます。

銘板シールの使用用途

銘板シールは様々な用途で使用されます。以下はその一例です。

1. 自動車

自動車産業では、銘板シールが車両情報の表示に重要な役割を果たします。車両の型番やエンジン番号、製造年が記載され、車両の登録や整備時に必要な情報を提供します。

また、安全指示や運転に関する注意事項が明記されており、ドライバーに対して安全運転を促進します。タイヤの適正圧力やエンジンオイルの交換時期などの情報も記す場合があり、車両の適切な運用を支援することが可能です。

2. 医療機器

医療業界においては、銘板シールが医療機器の識別と管理において重要な役割を果たします。医療機器の型番や製造元および製造日が記載されており、機器の適切な管理やメンテナンスを支援します。医療機器のトラブルシューティングや交換が迅速に行えるため、機器の信頼性を確保するために欠かせません。

3. 産業機械

銘板シールは機械や設備の識別と管理に不可欠です。機械の型番や製造元及び性能仕様がシールに記載されており、機械の特定や管理が簡単になります。また、部品交換やメンテナンス時に必要な情報を迅速に取得でき、トラブルシューティングや修理履歴の追跡もスムーズに行えます。

銘板シールの原理

銘板シールは、耐久性や環境適応性を確保するために、様々な素材から作られます。一般的にはプラスチックや金属または耐熱・耐水性の高い特殊なフィルムが使用されます。素材はシールが貼られる環境条件に応じて選定することが重要です。

シールに記載する情報は、印刷技術を用いて転写されます。一般的な方法にはスクリーン印刷やレーザー刻印などがあります。シールの用途や要求される耐久性に応じて印字方法を選定しますが、耐久性を高めるためにUVコーティングやラミネート処理が施されることも多いです。

銘板シールは、適切な接着技術を用いて対象物に貼り付けられます。シールの裏面には強力な接着剤を施すことが多いです。シールが長期間にわたって剥がれず、耐久性が保たれるように設計されています。

銘板シールの選び方

銘板シールを選ぶ際は、以下の要素を考慮することが重要です。

1. 素材

銘板シールを選ぶ際には、使用環境に応じて素材を選定することが非常に重要です。ポリウレタンや金属ベースのシールは高温環境に適しています。また、化学薬品に触れる可能性がある場合、耐薬品性のあるポリプロピレンなどを選ぶ必要があります。

また、屋外で使用する場合は、UVコーティングが施されたシールを選ぶと有利です。UVコーティングが施されたフィルムは、長期間にわたって色褪せや劣化を防ぎます。

2. 印字方法

印字方法は情報を明確に表示するために必要な要素です。スクリーン印刷は高い耐久性を持ち、大量生産に適していますが、初期コストが高い場合があります。レーザー刻印は非常に耐久性が高く、永続的な情報保持が可能です。

3. サイズ

銘板シールは、貼り付ける対象物のサイズや形状に合わせて選定する必要があります。シールが対象物に適切にフィットし、情報が明確に表示されることが重要です。曲面や不規則な形状の表面に取り付ける場合は、特注形状のシールを張り付ける場合もあります。

4. 規格・法令

特定の業界では、銘板シールに関する規格や法令が存在する場合があります。例えば、医療機器や航空機部品などは、特定の規格や認証が求められることがあります。使用する環境や業界の規定に従うことが重要です。

本記事は銘板シールを製造・販売する株式会社フォーワテック・ジャパン様に監修を頂きました。

株式会社フォーワテック・ジャパンの会社概要はこちら

ミシン目入り用紙

監修:株式会社フォーワテック・ジャパン

ミシン目入り用紙とは

ミシン目入り用紙とは、紙にあらかじめミシン目が入っている用紙です。

ミシン目は紙を簡単に切り離せるようにするために入れられた細かい切れ目です。切り取り式のクーポンやチケットなど、特定の部分を簡単に切り離す必要がある用途で使用されます。手作業での切断が容易な点が特徴です。

ミシン目入り用紙の使用用途

ミシン目入り用紙は様々な用途で使用されます。以下はその一例です。

1. 印刷業

印刷業では特にカレンダーや名刺の印刷に利用されます。カレンダーでは月ごとや週ごとに切り取ることができるミシン目を入れることで、使用後に簡単に整理できるようになります。また、名刺印刷ではミシン目入りによって自宅で名刺を簡単に切り取って使用することが可能です。

2. 製造業

製造業では紙製部品の取り外しや取扱説明書に利用されます。紙製部品が複数の部分に分かれている場合、ミシン目入り用紙を使うことで簡単に分割して取り扱うことが可能です。また、取扱説明書や保証書にミシン目が入っていると、特定の部分を簡単に切り取って提出できるため、保証書の取り外し・提出などを円滑にすることができます。JAMA帳票、EIAJ標準納品書、などに広く使用されています。

3. 小売業

小売業ではクーポンやスタンプカードに使用されます。割引クーポンやプロモーションチケットにミシン目を入れることで、顧客が必要な部分だけを簡単に切り取って利用できるようになります。特定の商品に対する割引を受ける際などに便利です。

また、スタンプカードにミシン目を入れることで、ポイントが貯まった際に切り取って交換する形式をとることが可能です。これにより、ポイント交換を簡単にすることができます。

4. 教育業

教育業界ではテスト用紙やワークシートに利用されます。テスト用紙にミシン目を入れることで、学生が解答部分を切り離して提出できるようになります。教師が解答を分けて採点することができる上に、生徒も提出作業が楽になります。

また、ワークシートにミシン目が入っていると、学生が必要なページだけを簡単に切り取って使用できます。そのため、教材の管理が簡単になります。

ミシン目入り用紙の原理

ミシン目入り用紙の原理は、紙に均等な切れ目を入れることで、特定の部分を簡単に切り取ることができる仕組みです。

まず、紙に対して微細な切れ目やスリットを施すことで作成されます。この切れ目はロータリーカッターなどで加工することが多いです。紙を連続的に送りながら、ロータリー刃で細かい切れ目を入れていきます。

ミシン目は、用紙の設計時に計画的に配置されます。間隔や深さは、使用目的や用紙の厚さによって異なります。例えば、薄い紙には細かいミシン目を入れ、厚い紙には深めのミシン目を入れることで、切り取りやすさを調整します。

ミシン目が入っていない部分は紙が切れていないため、強度と耐久性が保たれます。このため、用紙が一部だけ切り取られても、他の部分はしっかりと保持される仕組みです。

ミシン目入り用紙の選び方

ミシン目入り用紙を選ぶ際は、以下の要素を考慮することが重要です。

1. 用紙サイズ

用紙サイズは、用紙の全体的な大きさを指します。A4サイズは一般的な印刷や文書作成、パンフレットなどに適しています。広範な用途に対応できるため、汎用性が高いです。

また、A3サイズは大型の資料やポスター、カレンダーなどに使用されます。大きな情報を表示したい場合に便利です。

2. 分割サイズ

分割サイズはミシン目が入る部分のサイズで、切り取りたいエリアの大きさを指します。名刺やクーポンなどには、比較的小さな部分をミシン目にした製品が適しています。その他にも、用途に応じて様々なサイズを選定することが可能です。

3. 用紙種類

用紙の種類は素材や質感によって選びます。コート紙は表面が滑らかで光沢のある紙で、色が鮮やかに表現されるため、印刷物やポスターに適しています。マット紙は表面がざらざらしていて光沢がないため、文字やイラストが見やすく、上品な印刷が可能です。

4. 色

用紙の色もデザインや目的に応じて適切に選定する必要があります。 特定のデザインやプロモーション用に、カラフルな用紙が使われることも多いです。ブランドイメージなどに合った色を選ぶことができます。

本記事はミシン目入り用紙を製造・販売する株式会社フォーワテック・ジャパン様に監修を頂きました。

株式会社フォーワテック・ジャパンの会社概要はこちら

MILコネクタ

監修:グレンエアジャパン

MILコネクタとは

MILコネクタとは、MIL規格に準拠したコネクタです。

MIL規格とは、アメリカ国防総省が調達する物資に対して定められている品質基準です。角形と丸形があります。MILコネクタは、米軍の航空機に搭載される電子機器接続用として開発された歴史を持ちます。現在では民生用途でも多く用いられますが、軍用コネクタとして開発された経緯から信頼性、堅牢性、耐久性が非常に高いつくりとなっています。

MILコネクタの使用用途

1. MILコネクタが使用される分野・領域

MILコネクタは、もともと米軍の航空機に搭載される電子機器接続用として1930年代に開発されました。現在では軍事用の他に民生用産業機器でも多く使用されており、航空宇宙、工業用、船舶用、自動車産業用などに使用されます。

主な用途には下記のようなものがあります。

  • 各種軍事用途 (通信、ナビゲーション、レーダー、空中、海洋誘導制御)
  • 航空・宇宙
  • コンピュータ
  • FA機器、工作機器、産業用ロボット
  • 半導体製造設備
  • 急速充電器
  • ATM
  • アミューズメント機器
  • 建設機械
  • プラント、発電所
  • パワーコンディショナー
  • 鉄道
  • 計測機器、屋外通信機器

例えば、堅牢なMILコネクタと、ノイズの影響を受けない光ファイバー技術を組み合わせることによって、長距離の通信を行うことも可能です。高帯域幅能力を備えているので、音声、映像、データ等の種々の用途に利用することができます。

2. MILコネクタが特に有効である使用目的

MILコネクタは耐久性・堅牢性に優れていることから、特に下記のような目的で使用される場合に有効です。

  • 振動や衝撃による断線や瞬断を防ぎ安定した通信を行う
  • 結露や高湿度によるショートを避ける
  • 信号と電源の配線を1本化する
  • 多芯高密度による省スペースを図る
  • メンテナンスができない場所で使用する

MILコネクタの原理

一般的なMILコネクタには丸形と角形とがあります。角形タイプは、フラットケーブルやその他のタイプのケーブル圧着結線もしくははんだ付け結線してハーネスします。丸形の基本的な構成は、マルチピンコネクタと、内部にコンタクトインターフェースを持つ円筒形のハウジングです。他の多くの電気コネクタと同様に、オス側のプラグとメス側のレセプタクルを組み合わせて、信号の伝送が行われます。

MIL規格を満たす堅牢性を担保するため、丸形では下記のような加工・構造の特徴があります。

  • ピンコンタクト: 導電性に優れた銅合金の丸棒を削り出して精密加工され、腐食と耐久性に強い金めっきが標準
  • ソケットコンタクト: クローズドエントリー構造
  • インサート: コンタクトの保持や位置決め、絶縁機能や機械的保護をする金属、ゴムやプラスチック
  • シェル: 頑丈で堅牢なアルミニウム合金製やステンレススチール製など

また、適切なアダプタ(バックシェル)を付ける事でIP67の防塵防水性のクリアだけでなく、外部の電磁ノイズから保護するEMI/RFIシールド、機械的保護することが可能です。半田タイプだけでなく圧着タイプでも単体防水型になるようにグロメットシールが施されており、誤嵌合を防止するためにキー位置を指定することができます。

MILコネクタの種類

1. 概要

MILコネクタには角形と丸形とがあります。角形のものは、フラットケーブルやその他のタイプのケーブルの接続に使用されます。

芯数は製品によって様々な種類があり、最小では2、最大では187のものがあります。多くの製品でコンタクト間隔は2.54mmピッチです。

また、インサート配列が極めて豊富で、信号、電源、同軸、光ファイバの組合せ配列の種類が多いとされます。幅広いケーブルサイズに対応可能です。

2. 丸形MILコネクタの種類

丸形MILコネクタには様々な形状があります。コネクタの外殻であるシェル形状は、

  • プラグ側: ストレート、アングル
  • レセプタクル側: ウォールマウント、中継、ボックスマウント、ジャムナット、ガラスハーメチック

などです。また、コンタクトを保持する絶縁部品であるインサートの種類として、

  • ソルダー (半田) タイプやクリンプ(圧着)タイプ
  • メタルクリップリテンションタイプや絶縁リテンションタイプ

などに大別されます。

本記事はMILコネクタを製造・販売するグレンエアジャパン様に監修を頂きました。

グレンエアジャパンの会社概要はこちら