ベールカッター

ベールカッターとは

ベールカッターとは、家畜のエサや寝わらになる牧草を発酵させてできた、牧草ロールや乾いた牧草のブロックを高速で裁断する機械です。今まで切るのが難しかった稲わらも切断できます。主にロール状に巻かれた牧草を裁断することからロールベールカッターともいわれます。

トラクターで使うところまで、牽引して200Vで駆動させるタイプ、エンジンで駆動するタイプ、トラックに積載して使用するタイプの3種類あります。裁断することで、寝わらに適した長さにカットすることができるので、無駄が少なくなります。また、家畜のエサとして、飼料の裁断にも使用でき、そのまま使用したり、ミキサーに入れることも出来ます。

ロール径1800mm幅1200mmの円柱状になった牧草などを上部から入れて下部にある回転式のカッターで、幅20・40・80・140・200mmに設定された長さにカットできます。

ベールカッターの使用用途

ベールカッターは牧草ロールを切断して、牛などの家畜のエサや寝床に引く牧草を作るのに使用します。

ベールカッターを使わない場合は、ミキサーで攪拌切断を行いますが、切り口が綺麗に切断できず、繊維質が潰れてしまいます。そのため、ベールカッターで切断したものより家畜が摂取する量が減ります。

また先に切断してミキサーに入れることで、ミキサーの寿命が伸びたり、攪拌のための時間短縮ができ省エネになります。寝わらに適した、均等な長さに切ることができるので、家畜の病気予防に役立ちます。なにより機械が切断してくれることで労働が楽になり、時間短縮ができます。

良い事ずくめのベールカッターですが、ネックは、価格が200万越えと高いことです。規模の大きい畜産業者が使用する機械です。

カテゴリー
category_usa

Pentane Gas

What Is Pentane Gas?

Pentane gas, an alkane with five carbon atoms, exists in three structural isomers: n-pentane, isopentane, and neopentane. Typically, the term “pentane” refers to n-pentane, the linear-chain form. It is a nonpolar compound, insoluble in water but miscible with many organic solvents like ethers and alcohols.

Classified as a Class 4 hazardous substance, pentane gas is highly volatile and flammable, even at room temperature. Therefore, handling pentane gas requires precautions such as eliminating ignition sources, preventing leakage, and ensuring adequate ventilation.

Pentane Gas Data

  • CAS No.: 109-66-0
  • Molecular Weight: 72.15
  • Boiling Point: 36.1°C
  • Melting Point: -129.7°C

Source: American Chemical Society

Uses of Pentane Gas

Pentane gas is utilized in adhesives, printing inks, organic synthesis experiments, and as an extraction solvent due to its high volatility. It’s also used as an anesthetic and in binary power generation for geothermal power plants. Additionally, n-pentane is a reference material in gas chromatography (GC).

Pentane Gas Safety and Regulations

Pentane gas, with a flash point of -49°C, is an extremely flammable compound, requiring the elimination of ignition sources during use. Though it has low acute toxicity, it can act as an anesthetic and irritant to the respiratory tract. Precautions include preventing leakage and ensuring proper ventilation. Pentane gas handling also requires adherence to OHSA regulations for risk assessment.

プラウ

プラウとは

プラウとは、農地などの土を掘り起こす器具で、いわゆる鋤のことです。

トラクターに付けて使用します。プラウを使うと、土を大きく、深く掘り起こすことができます。土をきるコールターと言われる円盤とコールターの後ろにボトムと言われる鍬がついており、ボトムで土を曳きます。

ボトムは、耕す畑や田んぼの規模にあわせて、1から7つまで付けることが可能です。広大な場所を効率的に掘り起こせますが、深さが40cmと深いため、その後整地を行う必要があります。

プラウは古くから使用されている農機具で、はじめは牛に引かれていました。その後、馬になり、工業国では蒸気機関になりました。今では、エンジンを搭載したトラクターが使われています。

プラウの使用用途

プラウは、広い畑や田んぼの種まきや苗の植えつけの際に、土を耕すために使われます。深く掘れることから、下にある元気な土を上に出し、上にある葉や根を下に埋めることで、肥沃な土になります。土の疲弊を改善して堆肥度を上げ、良い作物を作ることが可能です。

また、土が固い土地や石があっても使用することができます。プラウを使って耕す場合、下の土を上に出すことで、害虫の卵や幼虫を死滅させることがでるほか、水はけの良い土壌にできることが大きなメリットです。

近年、土壌の流出が多い地域では、プラウの使用が控えられています。農業以外の使用例として、海底ケーブルを敷設するときや、海底田油の探索、湖底に水道管を敷設するときなどが挙げられます。

プラウの特徴

長所

1. 反転効果を得られる
プラウを使って耕すと、同じく耕うんする機械であるロータリーよりも深く土壌を耕せます。そのため、上層の土と下層の土を入れ替えることが可能で、圃場を作物の成長に適した土壌にしやすいです。

堆肥や有機物をすきこむことで微生物の活動を活発にし、地力を上げることが期待できます。また、雑草の種や表層の病原菌、害虫を深く埋没できるので、雑草の発生や病気、害虫による被害を抑制する効果も期待できます。

2. 破砕効果を得られる
プラウで深く耕すことによって、圃場の耕盤を破砕することが可能です。耕盤を破砕することで水や空気の通り道ができるため、排水性の向上が期待できます。

また、耕盤が破砕されることで、作物の根が深くまで伸びていきます。地下深くまで根を伸ばすことで、養分の吸収率が上がり、作物を丈夫に育てます。

短所

1. 耕盤層が形成される
上記の長所で挙げている破砕効果と矛盾する内容にはなりますが、大型機械を使用しているような圃場では機械の踏圧によって、固まった地盤が作られる場合もあります。

また、耕盤が作られた土壌をプラウで反転すると、踏み固めて硬くなった土が上層に来るため、土の隙間が少なくなり、排水性が悪くなったりします。

2. 土壌が劣化する
必要のないプラウ耕は、土壌を劣化させてしまう恐れがあります。上層にあった土を下層に返すため、肥料を撒いて調整してきた土壌をまた始めから作り直さなければいけません。

さらに、堆肥などでふかふかにした土も下層の湿りけのある土と入れ替わってしまいます。

プラウの種類

プラウは反転装置の違いによって3種類に分類されます。

1. ボトムプラウ

一般的にプラウとは、ボトムプラウのことを指します。ボトムは、金属や樹脂を貼り付けた曲面で、土壌を破砕し反転させます。

作業方法の違いによって、ワンウェイプラウ・リバーシブルプラウ・丘曳きプラウ・溝曳きプラウがあり、目的の違いによって水田用プラウ・深耕プラウなどに分類されます。

2. ディスクプラウ

ディスクプラウは、円盤を回転させながら土壌の反転を行います。円盤が回転するので土の中の石などの障害物があっても乗り超えられ、機械の破損を防ぐことができます。

3.チゼルプラウ

チゼルプラウはチゼル (刃先) がついた爪を使い、土壌を爪で引っ掻くように耕起します。作業速度が早いのが特徴で、能率的に粗耕起したいときに適しています。

プラウの選び方

プラウは、使用場面やトラクタの馬力によって選ぶことが大切です。土壌を深く耕したい場合や、堆肥や有機物をしっかりすき込みたい場合は、ボトムプラウを使うことによって効率よく正確に作業できます。

ディスクプラウは、反転による乾土効果や切り株の埋戻し効果が高く、水田の荒起し作業に適しています。また、PTO動力で回転させるディスクプラウを使用すれば、けん引力が少なくて済むため、小型トラクタで作業可能です。

チゼルプラウは作業幅が広く、物によっては100馬力以上のトラクタが必要となります。能率よく粗耕起を行い、土壌を乾かしたいときに適しています。

プラウの使い方

プラウは、基本的に圃場を往復して耕していきます。土質や作業速度によって土の返り方が違うため、必要に応じて作業速度や深さなどを変えていく必要があります。

また、耕す前に目標とする耕深を決めておき、深さを調整することをおすすめします。

カテゴリー
category_usa

Benzophenone

What Is Benzophenone?

Benzophenone, a white or almost white crystalline powder, is notable for its sweet aroma. As a key aromatic ketone compound, it serves as an essential building block in organic chemistry, often referred to as diphenyl ketone.

Properties of Benzophenone

With a melting point of 48~50°C and a boiling point of 305.4°C, benzophenone exhibits significant thermal stability. Its flash point is 143°C, and it has a density of 1.11 g/cm3. Soluble in acetone and ethanol, it remains virtually insoluble in water. Structurally, it comprises two benzene rings linked by a carbonyl group, known as Ph2CO, with a molecular weight of 182.22 and CAS number 119-61-9.

Uses of Benzophenone

1. Photoinitiator

Its ability to absorb ultraviolet light makes it an effective photoinitiator in polymerization processes.

2. UV Absorber

Benzophenone-based UV absorbers protect plastics and paints from UV damage by converting UV light into less harmful forms of energy.

3. Preparation of Dehydrated Solvents

It is utilized alongside sodium metal to dehydrate solvents, with the blue color of benzophenone ketyl serving as an indicator for the dehydration process completion.

4. Photoaffinity Probe

In chemical biology, benzophenone is attached to small molecules to form covalent bonds with interacting proteins upon UV irradiation, aiding in the identification of protein interactions.

5. Other Uses

Derivatives of benzophenone find use as sunscreen ingredients, in organic synthesis, and as intermediates for pharmaceuticals.

Other Information on Benzophenone

1. Production Methods

Commercially, benzophenone is produced via the copper-catalyzed oxidation of diphenylmethane. Laboratory synthesis can involve hydrolysis of dichlorodiphenylmethane or the Friedel-Crafts reaction of benzoyl chloride with benzene.

2. Regulatory Information

Benzophenone is recognized as a hazardous substance under various laws, requiring careful management and handling according to various safety regulations.

3. Handling and Storage Precautions

Precautions include storing in a cool, dark place, using protective gear, and adhering to safe handling practices to prevent dust dispersion and avoid skin or eye contact.

カテゴリー
category_usa

Benzonitrile

What Is Benzonitrile?

Benzonitrile, an aromatic cyanide with the formula C6H5CN, was identified by Hermann von Fehling in 1844 during the decomposition of ammonium benzoate. This discovery led to the term “nitrile” for similar compounds. Classified under various regulations as a hazardous substance, a flammable liquid, and a deleterious substance, it requires careful handling.

Uses of Benzonitrile

As a versatile chemical, benzonitrile serves as a precursor to benzoic acid, benzylamine, and triazine rings through various reactions. Its applications span from plastics manufacturing to pharmaceutical and agricultural intermediates, solvents for antioxidants, plating solutions, dye construction, and epoxy resin curing agents.

Properties of Benzonitrile

This colorless liquid features an almond-like scent, a melting point of -13°C, and boils between 188-191°C. It’s flammable, with a flash point of 75°C and an ignition point of 550°C, soluble in alcohols and ethers, yet only 1% soluble in water at 100°C.

Structure of Benzonitrile

Known as phenyl cyanide, its structure includes a benzene ring with a cyano group substituting one hydrogen atom, abbreviated as PhCN. It has a molar mass of 103.04 g/mol and a density of 1.0 g/ml.

Other Information on Benzonitrile

1. Synthetic Methods

Benzonitrile is produced industrially by the ammoxidation of toluene and can be synthesized in the lab through dehydration of benzamide or benzaldehyde oxime. It’s also obtained via Rosenmund-von Braun synthesis or by diazotizing aniline in the Sandmeyer reaction.

2. Benzonitrile Reaction

Hydrolysis converts benzonitrile to benzoic acid, while reactions with amines yield N-substituted benzamides. It forms complexes with late transition metals, such as bis(benzonitrile)palladium dichloride, a yellowish-brown solid used in organic synthesis, showcasing its role as a convenient synthetic intermediate.

カテゴリー
category_usa

Benzene

What Is Benzene?

Benzene, an aromatic hydrocarbon, is recognized for its simple chemical structure. This colorless liquid, known for its sweet aroma, plays a fundamental role in petrochemistry and is found in crude oil. Its vapors are toxic, affecting hematopoietic function, and hence, it’s considered a hazardous air pollutant. Recent regulations have reduced benzene content in gasoline to less than 1% from approximately 5%.

Uses of Benzene

Benzene serves as a precursor to various aromatic compounds, finding applications in dyes, synthetic rubbers, detergents, pigments, rubber chemicals, pharmaceuticals, fragrances, fibers, resins, agricultural chemicals, explosives, and insect repellents. The styrene monomer, derived from benzene and ethylene, is particularly sought after for producing polystyrene used in electronics casings, insulation, and containers. Benzene also contributes to the production of nylon, polycarbonate, and polyurethane.

Properties of Benzene

With a melting point of 5.5°C and boiling point of 80.1°C, benzene’s volatility and flammability are notable. Its structure, a hexagonal ring (C6H6) with a molecular weight of 78.11 and density of 0.8765 g/cm3, showcases equal carbon bond distances due to delocalized pi-electrons, symbolized at times by a circle within a hexagon. When part of a substituent, this ring is termed a phenyl group or Ph.

Other Information on Benzene

1. Substitution Reaction of Benzene

Benzene primarily undergoes substitution rather than addition reactions. Examples include halogenation, yielding chlorobenzene and bromobenzene; sulfonation, producing benzene sulfonic acid; nitration, leading to nitrobenzene; and processes like alkylation and acetylation.

2. Addition Reaction of Benzene

Under ultraviolet light, benzene reacts with chlorine to form benzene hexachloride, also known as 1,2,3,4,5,6-hexachlorocyclohexane. Hydrogenation of benzene yields cyclohexane.

3. Benzene Synthesis

Benzene is synthesized by catalytic reaction of hydrocarbons with hydrogen, forming aromatic hydrocarbons through ring formation and hydrogen loss. Additionally, benzene and xylene can be derived from toluene, or benzene can be produced from acetylene using a catalyst. This versatility makes benzene an economically significant chemical raw material.

カテゴリー
category_usa

Benzaldehyde

What Is Benzaldehyde?

Benzaldehyde, with the chemical formula C7H6O, is an aromatic aldehyde found naturally. It is the primary component of the essential oils from peach and apricot kernels, known for its almond-like fragrance.

This compound is prone to oxidation, transforming into benzoic acid upon exposure to air. Classified as a hazardous substance, Class 4, flammable liquid, petroleum No. 2, hazardous rank III under various regulations, it poses a flammability risk.

Uses of Benzaldehyde

Benzaldehyde’s almond scent makes it popular in soaps and cosmetics. It is industrially produced from benzal chloride, derived from toluene chlorination, making it cost-effective for widespread use. Beyond fragrances, its reactivity as an aldehyde makes it valuable in synthesizing dyes, pharmaceuticals, and other chemicals.

Properties of Benzaldehyde

With a molecular weight of 106.12 and CAS number 100-52-7, benzaldehyde is a colorless to light yellowish-brown liquid with a distinctive odor. It has a melting point of -26°C, a boiling point of 180°C, and a flash point of 62°C. Its vapor pressure is 150 Pa, and it has a density of 1.041-1.050 g/mL.

Chemical Properties

Highly soluble in ethanol and diethyl ether, it barely dissolves in water. It’s stable under normal conditions but sensitive to light. When stored, it should be kept away from heat, light, and oxidizing agents to prevent hazardous conditions.

Other Information on Benzaldehyde

Safety Measures

Benzaldehyde can irritate eyes and respiratory systems and is harmful if ingested. Long-term exposure may affect the central nervous system, blood, liver, and lungs, and it is toxic to aquatic life. Immediate medical attention is advised if exposure occurs.

Handling and Storage

Appropriate protective gear and ventilation are crucial when handling benzaldehyde. Storage should be in a cool, ventilated area away from light and oxidizers. Special precautions, like a yellow card, are necessary for transportation to avoid contamination with food or feed.

Disposal Guidelines

Disposal should minimize hazard levels through detoxification and neutralization, adhering to relevant laws and regulations. Containers must be thoroughly emptied and properly disposed of or recycled.

カテゴリー
category_usa

Benzyl Alcohol

What Is Benzyl Alcohol?

Benzyl alcohol is a volatile aromatic alcohol with the molecular formula C6H5CH2OH. This clear, colorless liquid is known for its weak, characteristic aroma. It is insoluble in water but miscible with many organic solvents.

It naturally occurs as an esterified component in essential oils from jasmine, hyacinth, acacia, ylang-ylang, and other flowers.

Uses of Benzyl Alcohol

Benzyl alcohol’s versatility is evident in its application across fragrances, solvents, pharmaceuticals, and as intermediates in chemical synthesis.

1. Fragrance

Known for its almond-like aroma, it’s used in cosmetics, soaps, perfumes, and food flavoring.

2. Solvent

It serves as an alternative to methylene chloride for paint film and floor wax removal, besides being a solvent in paints, adhesives, and inks.

3. Chemical Synthesis

As an intermediate, it’s crucial in synthesizing benzaldehyde and benzylamine, among others, and as a benzylating agent or a protective group in syntheses.

Its roles extend to being a solvent and diluent in ester production, agrochemicals, inks, lacquers, cellulose derivatives, and as an auxiliary in dyeing hydrophobic fibers like acrylics. Its utility in cosmetics, food additives, pharmaceutical ingredients, and anesthetics further showcases its importance.

Properties of Benzyl Alcohol

This liquid’s boiling point is 205°C, with a melting point of -15°C, and a specific gravity of 1.045. Its weak aroma resembles almonds, and though slightly insoluble in water, it dissolves well in ethanol, ether, chloroform, and acetone. Stable under light and heat, benzyl alcohol can oxidize in air.

While generally low in toxicity, it may irritate skin and eyes at high concentrations, and oral ingestion has been linked to poisoning, necessitating careful handling.

In organic synthesis, its capacity for oxidation to benzaldehyde and reduction to benzylamine highlights its significant reactivity.

Structure of Benzyl Alcohol

With a molecular formula of C7H8O and a weight of 108.14, it combines a benzene ring and a hydroxyl group, offering unique solubility and reactivity. This structure, balancing the benzene ring’s resonance stability and the hydroxyl group’s polarity, enables good solubility in organic solvents and utility in synthetic reactions.

Other Information on Benzyl Alcohol

Benzyl Alcohol Production Method

Produced predominantly through halogenation and reduction of toluene, this method involves creating benzyl halides and then reducing them with bases like potassium or sodium hydroxide. Alternative synthesis routes include the Canizaro reaction, the Friedel-Crafts reaction, and the reductive amination of nitrobenzene.

カテゴリー
category_usa

Heptane

What Is Heptane?

Heptane, a colorless and clear liquid, is known for its specific odor. It falls under various classifications for hazardous materials, including “Hazardous Substance Class 1, Petroleum No. 1, Hazardous Rank II” under the Fire Service Act and is recognized under several regulations for its handling and transportation due to its hazardous nature.

Uses of Heptane

As a solvent, heptane (n-heptane) is utilized in polyolefin polymerization, adhesives, paints, inks, and for extracting oils and fats. It also serves as a thinner, a measuring reagent in spectroscopic and gas chromatography analyses, and in determining the octane number of gasoline. Its role as a cleaning agent in research experiments highlights its versatility in scientific applications.

Heptane Properties

n-Heptane is characterized by a melting point of -91°C, a boiling point of 98°C, a flash point of -1°C, and a spontaneous combustion point of 204°C. Known for its volatility and petroleum odor, n-heptane’s solubility in ethanol and diethyl ether contrasts with its insolubility in water. Its CAS registration number is 142-82-5.

Heptane Structure

Heptane has 11 isomers, including n-heptane, which is a linear alkane with the chemical formula CH3(CH2)5CH3 and a molecular weight of 100.20. Notably, n-heptane is used as an indicator of octane number 0.

Other Information on Heptane

1. Structural Isomer of Heptane (Main Chain: C7)

n-Heptane, distinguished by having seven carbon atoms in its main chain, is the only heptane isomer in this category.

2. Structural Isomer of Heptane (Main Chain: C6)

2-methylhexane and 3-methylhexane, both with six carbon atoms in the main chain, represent this category. 2-methylhexane is also known as isoheptane.

3. Structural Isomer of Heptane (Main Chain: C5)

3-ethylpentane, with one side chain, and four types with two side chains—2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, and 3,3-dimethylpentane—constitute this group. 2,2-dimethylpentane is also referred to as neoheptane.

4. Structural Isomer of Heptane (Main Chain: C4)

2,2,3-trimethylbutane is the sole heptane type with four carbon atoms in the main chain and three in the side chains.

5. Stereoisomers of Heptane

Considering stereoisomers, there are 11 for heptane. For instance, 3-methylhexane exists as (3R)-3-methylhexane and (3S)-3-methylhexane, while 2,3-dimethylpentane has (3R)-2,3-dimethylpentane and (3S)-2,3-dimethylpentane. These compounds illustrate the smallest alkanes possessing a chiral carbon.

カテゴリー
category_usa

Hexenal

What Is Hexenal?

Figure 1. Basic Information on Trans-2-Hexenal

Figure 1. Basic Information on Trans-2-Hexenal

Hexenal, an organic compound with the formula C6H10O, includes isomers like trans-2-hexenal and cis-3-hexenal, also known as Aoba-Aldehydes. It has a molecular weight of 98.14 g/mol.

Uses of Hexenal

The isomers, notably trans-2-hexenal and cis-3-hexenal, contribute to grass and leaf fragrances, serving as flavoring agents. Although both have plant aromas, trans-2-hexenal is preferred for its aromatic quality over the unpleasant odor of cis-3-hexenal.

Properties of Hexenal

Trans-2-hexenal, a colorless to yellow liquid, melts at -39.8°C, boils at 146°C, and has a flash point of 43°C. It dissolves in acetone and ethanol but is nearly insoluble in water. Cis-3-hexenal boils at 126°C.

Structure of Hexenal

Figure 2. Basic Information on Cis-3-Hexenal

Figure 2. Basic Information on Cis-3-Hexenal

As aliphatic aldehydes, trans-2-hexenal and cis-3-hexenal have densities of 0.846 g/mL and 0.851 g/mL at 25°C, respectively. Cis-3-hexenal can isomerize to trans-2-hexenal, with its alcohol form, cis-3-hexen-1-ol, being a stable and commonly used fragrance.

Other Information on Hexenal

1. History of Hexenal

The identity of tree fragrance during the fresh green season was first explored by Reinke around 1870 through essential oils. Theodor Curtius identified 2-hexenal in 1912, which Akinawa Hatanaka in 1960 confirmed as the same as the Aoba aldehyde from tea.

2. Natural Hexenal

Trans-2-hexenal is found in various vegetables and fruits, making up the stink bug odor. Cis-3-hexenal, prevalent in many plants and used as a pheromone by insects, contributes to the aroma of tomatoes and other produce.

3. Synthetic Method of Hexenal

Figure 3. Synthesis of Hexenal

Figure 3. Synthesis of Hexenal

Trans-2-hexenal and cis-3-hexenal are synthesized from ethyl vinyl ether and 3-hexen-1-ol, respectively, with cis-3-hexenal also biosynthesized from linolenic acid.