カテゴリー
category_usa

Potassium Iodate

What Is Potassium Iodate?

Potassium iodate is a type of iodate salt with the chemical formula KIO3.

It is a colorless crystal that is soluble in water but insoluble in ethanol. It is stable at room temperature and decomposes into potassium iodide (KI) and oxygen when heated.

Potassium iodate is produced by reacting iodine with potassium hydroxide or by electrolyzing a potassium iodide solution. It is used in the coloring experiment of the “iodo-starch reaction” in chemistry, together with sodium thiosulfate and other substances.

Uses of Potassium Iodate

Potassium iodate is a strong oxidant and is used as an oxidant in chemical analysis, such as iodine reduction titration.

In other medical applications, it is used as a prophylactic for radiation damage and as a treatment for thyroid dysfunction due to iodine deficiency.

In overseas food products, it is added to powdered milk and salt as a dietary supplement to prevent iodine deficiency. In Japan, it is used as a feed additive to supplement nutritional components (iodine and potassium) in feed for industrial animals such as cattle, pigs, and chickens.

カテゴリー
category_usa

Potassium Iodate

What Is Potassium Iodate?

Potassium iodate, with the chemical formula HIO3, is noted for its CAS number 7782-68-5. This relatively strong acid demonstrates significant oxidizing power and can be crystallized, distinguishing it from other halide oxoacids.

Uses of Potassium Iodate

Employed as a medical astringent, disinfectant, and analytical reagent, potassium iodate’s stability in the air facilitates its handling. Its oxidative properties make it useful in analytical chemistry for titrating various iodine compounds and determining mercury and lead levels. It’s also utilized in X-ray film development and as a crystal nucleus for artificial rainfall.

Properties of Potassium Iodate

Appearing as a white crystal or powder, potassium iodate has a molecular weight of 175.91 and melts at 110°C. It’s highly soluble in water, showcasing its strength as an acid with a density of 4.62 g/mL and a pKa of 0.75.

Types of Potassium Iodate

Available as a reagent for research and as an industrial fine chemical, potassium iodate is offered in various quantities suitable for both laboratory and factory applications.

Other Information on Potassium Iodate

1. Synthesis of Potassium Iodate

Produced through the oxidation of iodine by several agents or by dissolving diiodine pentoxide in water, potassium iodate’s synthesis methods highlight its reactive nature.

2. Chemical Reaction of Potassium Iodate

In solution, it dissociates to iodate ions, acting as a potent oxidant in acidic solutions but less so in basic ones. Its reactivity with various substances necessitates careful storage away from light and incompatible materials.

3. Contrast With Other Oxoacids

While similar oxoacids like chloric and bromic acid cannot be isolated, potassium iodate stands out for its ability to be crystallized. Its existence alongside other iodine oxoacids of varying oxidation states further underscores its unique chemical properties.

4. Iodic Acid Salts

Its salts, including ammonium, potassium, and sodium iodates, are recognized for their hazardous nature, necessitating careful handling.

5. Potassium Iodate Hazard Information

As an oxidizing solid, potassium iodate poses risks of skin corrosion and irritation, classified under GHS and regulated for its hazardous and toxic nature.

地熱発電用蒸気タービン

地熱発電用蒸気タービンとは

蒸気タービンは、ギリシャの数学者ヘロンが考案、発表した「ヘロンの回転球」が原型といわれています。現在の原型となるタイプの蒸気タービンは、1898年にフランスのラトーが実用化を成功させました。

地熱発電用蒸気タービンは、地中深くから取り出した熱エネルギーの蒸気をタービンの動翼に吹き付けて、羽根車の回転でエネルギーに変換する装置の原動機です。

地熱発電は、地下のマグマの熱エネルギーを利用して発電を行います。地熱貯留層(マグマによって熱せられた高温・高圧の地下水が溜まっている層)で200〜300℃を超える高温の天然蒸気によって蒸気タービンが回転してエネルギーが作り出されます。

蒸気タービンの原理は、水車が水の力で、風車が風の力で回転しているように蒸気の力でタービンの羽根車を回転させ、エネルギーを作り出すことです。このように私たちの生活や産業を支えている電気を地熱発電で作り出す際に、重要な要素を持ちます。

地熱発電用蒸気タービンの使用用途

地熱発電において、発電機の駆動用として用いられているのが、地熱発電用蒸気タービンです。地熱発電の方式の代表例として、直接的に蒸気を導いて発電する天然蒸気利用方式、蒸気と水を分け、蒸気のみをタービンに導くフラッシュ方式のほか、バイナリー方式などがあります。

地熱発電では、地中深くの地熱貯留層から昇る蒸気が蒸気タービンに達するまでに、抗口装置や気水分離器などの諸設備を通して、均質かつ不純物を除去した蒸気に精製されます。

このため、蒸気タービンは、地中から噴出する天然の高温蒸気を直接的に通気して駆動します。蒸気を危急時にしゃ断する主蒸気止め弁や、負荷に応じて蒸気量を調節する蒸気加減などを含む制御機構と出力発生部が内蔵しています。

地熱発電の蒸気タービンは、ベルヌーイの定理を用いています。蒸気が減圧、膨張すると高速流となり、この高速流を風車状の羽根車に衝突させて作り出された衝撃力が羽根車を速度エネルギーから動力エネルギーに変換します。

バイオエタノールプラント

バイオエタノールプラントとは

バイオエタノールプラントは、サトウキビやトウモロコシなどの資源を発酵させて製造するエタノール施設を指します。バイオエタノールプラントは、環境問題を好転させる再生可能エネルギー施設として、期待されています。

世界での経済発展のため、石油の需要拡大や原油の供給不安など二酸化炭素の排出による地球温暖化問題が悪化しています。バイオマスを原料として生産されたバイオエタノールは、もし燃焼したとしても、空気中の二酸化炭素が実質的に増えることがなく、カーボンニュートラルの特性を持っています。

日本政府も2050年までに温室効果ガスの排出をゼロにする目標を掲げていることから、カーボンニュートラルとしてバイオエタノールプラントは、注目されています。しかし、日本のバイオエタノール自給率は、諸外国と比較しても極めて低いのが実情です。

一方、ブラジルやアメリカでは、サトウキビやトウモロコシなどを用いたバイオエタノールの製造が増えた影響で、食料や家畜飼料の価格を押し上げる要因になりました。その解決策として、木材や稲わらといったセルロース系資源からのバイオエタノール製造も増加しています。

バイオエタノールプラントの使用用途

バイオエタノールは、気候変動枠組条約の中でカーボンニュートラルとしての位置づけで、ガソリンの代替燃料など再生可能エネルギーの1つとして活用されています。バイオエタノールがより普及すると二酸化炭素の排出を抑制することが可能です。

バイオエタノールプラントは、エタノール施設として地域に眠っている資源活用や、それに伴う地域の活性化など、様々な原料を用いたバイオエタノール生産の場として実証試験が進むとされています。

バイオエタノールを使った走行実証試験や収穫後の水田に残ったわらを用いたバイオエタノールなどカーボンニュートラルへ地球環境を守る取り組みが行われています。

欧米に比べると、日本のバイオエタノール自給率は極端に低く、エネルギー安全保障上のリスクになっています。そのため、バイオエタノールプラントによる開発が急ピッチで進められており、自給率を上げるため、今後の低コスト化など日本の技術開発も期待されています。

生分解性グリース

生分解性グリースとは

生分解性グリースは、閉鎖系の自然界に及ぼす影響が少ないとされる環境対応型の生分解性潤滑油の一種です。生分解性とは、有機物が微生物によって二酸化炭素と水に分解されることを呼びます。

一般的にOECD法による生分解度試験によって60%以上の生分解度の場合のみを生分解性グリースとしています。基油によって種類の大別され、ナタネ油、ヒマシ油などを使用した植物油脂系、トリメチロールプロパンエステル、ペンタエリスリトールエステルなどを使用した合成脂肪酸エステル系に分かれています。

脂肪酸エステルの原料となる脂肪酸は、植物油から得ることが主とされています。一方、ポリエーテル系の潤滑油は、シール材との相性や鉱油との混合安定性などの問題もあり、年々使用量は減少傾向にあります。

植物油脂系は、ヨーロッパにおいて、理想的な基油として広く使われており、生成分率と低価格が評価されています。欠点の植物油の酸化安定性が劣る点については、種子の遺伝子組み換え技術によって改良された植物油の開発が進んでいます。

生分解性グリースの使用用途

生分解性グリースは、主に建設機械、農業機械のほか、海洋・河川・湖沼周辺で稼働する機械やトラック、鉄道のポイント部など幅広い箇所の潤滑油として使われています。

生分解性は、前述のように基油の種類に大きく依存し、異なります。使用する時には、グリース性能に影響を及ぼす増ちょう剤の種類なども考慮して選ぶ必要があります。生分解度で考慮すると、長寿命や極圧性が生分解性グリースは優れていると言えますので、広温度範囲での機械に使用されていることが多いです。

現在、日本国内では、生分解性グリースをはじめとする生分解性潤滑油の使用を義務づけている法律等はありませんが、建設現場における油の漏洩対策の一環と自然に配慮した取り組みとして、生分解性作動油の品質・性能を追究する規格も策定中の段階です。

今までよりも自然環境や生態系保護に対する意識が社会全体で強くなっています。現在、機械を扱う企業にとって潤滑油の漏洩は負のイメージになりやすく、生分解性グリースをはじめとする生分解性潤滑油を使う動きが加速しています。 

カテゴリー
category_usa

Copper Iodide

What Is Copper Iodide?

Copper iodide is an odorless, inorganic compound, typically appearing as a white, light brown, or light gray powder or mass. Its chemical formula is CuI, with a molecular weight of 190.45, and it is designated under CAS No.: 7681-65-4.

Notable physical and chemical properties of copper iodide include a melting point of 605°C and a boiling point of 1,336°C. Copper iodide is slightly soluble in nitric acid or a mixture of nitric and hydrochloric acids, but is almost insoluble in water and ethanol. It is classified as a hazardous substance.

Uses of Copper Iodide

Copper iodide is utilized as a raw material in various fields, including catalysts, electronic materials, resin modifiers, and pharmaceuticals. In the electronics industry, it is recognized as a material for inorganic P-type semiconductors.

Semiconductors are classified into two types: N-type, where electrons are the primary charge carriers, and P-type, where holes (the absence of an electron in a lattice structure) act as charge carriers. In P-type semiconductors, holes appear to move similarly to electrons. Both organic and inorganic semiconductors are developed under this classification. Copper iodide’s excellent properties make it a suitable material for inorganic P-type semiconductors.

カテゴリー
category_usa

Silver Iodide

What Is Silver Iodide?

Silver iodide, with the formula AgI, occurs naturally as iodargyrite or miersite and is produced synthetically by reacting potassium iodide with silver nitrate. Classified as toxic by the GHS, it requires careful handling due to its reproductive, organ-specific, and systemic toxicity.

Uses of Silver Iodide

Employed in X-ray films, photographic emulsions, conductive glass, and notably for artificial rainfall due to its ice-like crystal lattice, silver iodide capitalizes on its photoreactive properties and similarity to ice and snow crystals for various technological and environmental applications.

Properties of Silver Iodide

Appearing as pale yellow crystals, silver iodide turns black upon light exposure. It boasts a melting point of 552°C and is notably insoluble in water but dissolves in specific solutions like concentrated nitric acid and potassium cyanide. Its unique crystal structure mimics ice, aiding in cloud seeding for rain induction.

Structure of Silver Iodide

As a silver halide, it has a molecular weight of 234.77 g/mol and exhibits polymorphism, with three known solid forms that change with temperature. Its dense crystal structure contributes to its insolubility and chemical properties.

Other Information on Silver Iodide

1. Formation of Silver Iodide Complexes

Though insoluble in water, silver iodide forms soluble complexes with alkali metal cyanides, iodides, and thiosulfates, but not with weak complexing agents like ammonia, reflecting its covalent bond characteristics and low solubility.

2. Solubility of Silver Iodide

With the lowest solubility product among silver halides, its interactions are governed by the HSAB theory, emphasizing the soft nature of both Ag+ and I ions and the covalent aspect of the Ag-I bond.

カテゴリー
category_usa

Lithium Iodide

What Is Lithium Iodide?

Lithium iodide, with the chemical formula LiI, is an inorganic compound and an iodide of lithium. It appears as a white to light yellowish-brown crystalline substance.

It is produced through reactions involving lithium carbonate and hydroiodic acid or by introducing hydrogen iodide gas into a lithium carbonate slurry.

Uses of Lithium Iodide

1. Catalyst

Used as a catalyst in acetic acid production, lithium iodide helps control the formation of hydrogen iodide in the reaction medium.

2. Batteries

In lithium batteries, lithium iodide serves as an inorganic solid electrolyte, enhancing battery safety through its self-healing properties. This makes it especially valuable in pacemakers.

3. Other Uses

Its applications extend to absorption refrigerators, dye-sensitized solar cells, electronic materials, and neutron-detection phosphors.

Properties of Lithium Iodide

With a molecular weight of 133.85 and a melting point of 446°C, lithium iodide is soluble in water and ethanol, deliquescent, and may alter under light exposure. It is stable under normal conditions but can decompose into hazardous halides and metal oxides.

Other Information on Lithium Iodide

1. Handling Methods

Recommended safety measures include local exhaust ventilation, safety showers, and protective gear to prevent dust exposure. Eating, drinking, and smoking should be avoided during handling.

2. First Aid Measures

First aid measures include seeking fresh air for inhalation exposure, washing with soap and water for skin contact, flushing eyes with water, and rinsing the mouth if swallowed. Immediate medical attention is advised if symptoms persist.

3. Fire Precautions

In case of fire, use appropriate extinguishing media and wear protective equipment due to potential toxic fumes.

4. Storage Methods

Store in a tightly closed, light-shielded container in a cool environment, preferably refrigerated and away from direct sunlight and moisture.

5. Crystal Structure

Lithium iodide has a NaCl-type structure, contributing to its use in pacemaker batteries since 1972 due to its ion conductivity and polarization properties.

カテゴリー
category_usa

Methyl Iodide

What Is Methyl Iodide?

Figure 1. Basic information on methyl iodide

Figure 1. Basic Information on Methyl Iodide

Methyl iodide, a monoiodide of methane, is known for its CAS number 74-88-4 and MITI number 2-42. Classified as a “deleterious substance” under various laws, it is recognized for its mutagenic properties and requires careful handling due to its designation under safety laws with a controlled concentration of 2 ppm.

Uses of Methyl Iodide

Primarily used as a fumigant and in controlling bacterial and fungal diseases in agriculture, methyl iodide’s applications extend to medical treatments for iodine deficiency and as a scintillation detector in radiation detection. Its role in livestock feed highlights its importance as an essential nutrient.

1. Medical Care

It addresses iodine deficiency, preventing goiter and hypothyroidism, and acts as a thyroid-blocking agent during nuclear incidents.

2. Scintillation Detection

Methyl iodide serves as a scintillator material, fluorescing upon radiation exposure to detect gamma rays.

3. Animal Nutrition

As a crucial feed supplement, it supports thyroid function and health in livestock.

Properties of Methyl Iodide

This colorless to brown liquid is noted for its high toxicity and characteristic odor, with a melting point of -66.45°C and a boiling point of 42.43°C. It shows excellent solubility in organic solvents and water, but decomposes in light, requiring storage in dark, sealed containers.

Other Information on Methyl Iodide

1. Reactions With Methyl Iodide

Figure 2. Reaction using methyl iodide

Figure 2. Reaction Using Methyl Iodide

As a precursor in Grignard reactions and a methylating agent in SN2 reactions, methyl iodide’s versatility is showcased in the synthesis of various organic compounds.

2. Methyl Iodide as a Methylating Agent

Despite its comparative expense, methyl iodide’s ease of handling and superior methylation capacity make it a preferred choice over other halides in organic synthesis.

3. Synthesis of Methyl Iodide

Figure 3. Synthesis of methyl iodide

Figure 3. Synthesis of Methyl Iodide

Produced through the reaction of methanol with iodine and red phosphorus, methyl iodide can be purified by column chromatography using silica gel or alumina or synthesized in high yield through the reaction of potassium iodide with dimethyl sulfate and calcium carbonate.

カテゴリー
category_usa

Sodium Iodide

What Is Sodium Iodide?

Sodium iodide, an odorless white crystalline powder or granules, is known for its chemical formula NaI and molecular weight of 149.89. With a melting point of 661°C, it’s highly soluble in water and ethanol

Uses of Sodium Iodide

Employed in the synthesis of organoiodine compounds through the Finkelstein reaction, sodium iodide’s applications extend to scintillation radiation detection and addressing iodine deficiency. It’s crucial in medical treatments, scintillation detection, and as an animal feed nutrient.

1. Medical Care

Addressing iodine deficiency, sodium iodide is vital for preventing goiter and hypothyroidism. It acts as a thyroid-blocking agent during nuclear incidents to prevent radioactive iodine absorption.

2. Scintillation Detection

As a scintillator, sodium iodide detects gamma radiation through fluorescence, making it invaluable in gamma-ray detection.

3. Animal Nutrition

As an essential nutrient, sodium iodide is incorporated into livestock feed to support thyroid function and overall health.

Properties of Sodium Iodide

This white crystalline solid has a density of 3.67 g/cm³ and dissolves readily in water, offering a salty taste. Hygroscopic, it degrades upon exposure to air, necessitating sealed storage. Its high refractive index and fluorescence under radiation underscore its use in scintillators.

Structure of Sodium Iodide

The ionic compound exhibits a face-centered cubic crystal structure, with sodium cations surrounded by six iodide anions and vice versa, mirroring the structure of cesium iodide.

Other Information on Sodium Iodide

How Sodium Iodide Is Produced

Produced through direct, metathesis, and solid-state reactions, the predominant method involves reacting sodium hydroxide or sodium carbonate with iodine, yielding sodium iodide alongside water or carbon dioxide.

The chemical reactions: NaOH + HI → NaI + H2O
Na2CO3 + HI → NaI + H2O + CO2

Alternative production methods include electrolysis and the reaction of metallic sodium with iodine, though less commonly employed.