カテゴリー
category_fr

cellule de charge

Qu’est-ce qu’une cellule de charge ?

Une cellule de charge (anglais : Load cell) est un transducteur de charge, un capteur qui détecte une charge ou une force, la convertit en un signal électrique et l’émet. La sortie correspondant à la charge ou à la force est utilisée pour afficher ou enregistrer la charge, et peut également être utilisée pour le contrôle.

En plus des jauges de contrainte, qui mesurent la déformation d’un objet, il existe d’autres méthodes de détection de la charge ou de la force, notamment les méthodes piézoélectriques, à couche métallique mince, capacitives, à fibre optique, à vibration et magnétostrictives.

La sortie des cellules de charge est un signal analogique ou numérique de tension ou de courant correspondant à la charge. Ils sont utilisés pour afficher et enregistrer les charges sur les instruments de pesage, pour mesurer la capacité de charge, pour mesurer les charges dans les machines d’essai des matériaux et également pour contrôler les installations.

Utilisations des cellules de charge

Les cellules de charge sont utilisées dans les instruments de pesage électroniques, les machines d’essai, les débitmètres, les balances industrielles et divers instruments de mesure. Parmi les produits ménagers, on peut citer les balances, les balances numériques et les sièges de douche.

Dans les applications industrielles, outre les balances, ils sont souvent utilisés dans les machines d’essai de traction, les dispositifs de mesure de la viscoélasticité, les presses et les dispositifs d’enroulement de fils et de films. Ils sont également utilisés pour tester la propulsion des moteurs à réaction, contrôler la tension des cordes d’amarrage des navires, mesurer le couple des moteurs, contrôler les charges des essieux, mesurer la tension des câbles dans les ascenseurs et peser les trémies et les silos.

De plus, les cellules de charge sont également utilisées sur les barres de contrôle de certains avions. Lorsque le pilote exerce une force sur le manche, l’ordinateur détecte l’ampleur de la charge et contrôle l’avion.

Dans l’industrie, les capteurs de pesage sont des appareils indispensables pour mesurer le poids des éléments de production afin d’améliorer la qualité, d’augmenter la productivité et de réduire les coûts, et pour numériser les données afin de les afficher sur des écrans, de prendre de bonnes ou de mauvaises décisions, de les imprimer et de les stocker.

Principe des cellules de charge

Il existe quatre principaux types de cellules de charge, en fonction de la forme de l’élément qui se déforme sous la charge : le type en poutre, le type à colonne, le type en S et le type diaphragme.

1. Le type en poutre

Le type en poutre mesure l’ampleur de la déformation de la poutre lorsqu’une charge est appliquée à l’extrémité d’une poutre en porte-à-faux. Il est utilisé pour les plates-formes de pesée.

2. Le type en colonne

Le type en colonne mesure la déformation dans le sens de la compression d’une surface cylindrique sous la charge d’un élément cylindrique. Il est utilisé pour les applications industrielles telles que les réservoirs et les trémies. Plusieurs cellules de charge sont souvent utilisées, auquel cas la charge doit être appliquée de manière égale à chaque cellule.

3. Le type en S

Dans le type en S, une charge est appliquée aux deux extrémités d’un élément en S et la déformation de l’élément en S est mesurée et convertie en charge. Il est souvent utilisé dans les machines d’essai de traction pour mesurer les forces de traction.

4. Le type diaphragme

Le type diaphragme applique une charge au centre du diaphragme et mesure l’ampleur de la déformation du diaphragme. Il est utilisé pour les capteurs de force en général.

En changeant la taille et le matériau de la cellule utilisée, l’échelle de la charge à mesurer peut être augmentée ou diminuée. Il est ainsi possible de mesurer des charges dans une large gamme, allant de quelques grammes à des forces énormes de l’ordre de la tonne. Pour la mesure de charges infimes, des cellules de charge de haute précision, capables de mesurer de l’ordre du mN, ont été développées et sont utilisées, par exemple, dans la recherche et le développement de muscles artificiels.

Les méthodes de détection de l’ampleur de la déformation des composants qui se déforment sous l’effet d’une charge comprennent les jauges de contrainte, les méthodes piézoélectriques, les méthodes à couches métalliques minces, les méthodes capacitives, les méthodes à fibres optiques, les méthodes vibratoires et les méthodes magnétostrictives.

Une jauge de contrainte est attachée à un corps élastique appelé générateur de contrainte, qui se dilate ou se contracte sous l’effet d’une déformation minime, modifiant sa section transversale et la résistance de la jauge. Cette variation est proportionnelle à la charge, de sorte que la charge appliquée à la jauge de contrainte est calculée à partir de la variation de la résistance.

Autres informations sur les cellules de charge

1. Unités des cellules de charge

Les cellules de charge affichent la valeur mesurée dans l’unité SI de “force”, “N” newtons. Selon la capacité de la cellule de charge, on peut également utiliser “mN” ou “kN”.

Le “N” Newton est la valeur obtenue en multipliant la masse par l’accélération de la pesanteur. Si l’on connaît l’accélération de la pesanteur à l’endroit de la mesure, la masse (kg) peut être mesurée à l’aide d’une cellule de charge. 

2. Précision de la cellule de charge

Il est courant de ne pas mentionner la “précision” dans les spécifications des cellules de charge. La précision d’une cellule de charge seule est jugée globalement à partir de la linéarité, de l’hystérésis, de la répétabilité et des effets de la température décrits dans les spécifications.

Lorsqu’une tension prédéterminée est appliquée à une cellule de charge, celle-ci délivre une tension proportionnelle à la charge, mais cette tension est infime, tout au plus 20 mV. Cette petite tension est ensuite divisée en parties par million et mesurée, de sorte que l’équipement de mesure utilisé doit être extrêmement stable et précis.

La précision des appareils de mesure basés sur des cellules de charge doit être jugée de manière globale, en incluant les erreurs causées par les cellules de charge et les indicateurs individuels, les conditions de température, les conditions de montage et les vibrations. Pour ce faire, la précision de la cellule de charge, qui est la partie sensible, et la précision de l’indicateur sont déterminées respectivement, et la précision globale est calculée par la racine carrée de la somme de leurs carrés.

カテゴリー
category_usa

Aminobenzoic Acid

What Is Aminobenzoic Acid?

Aminobenzoic Acid is a type of aromatic aminocarboxylic acid.

Aminobenzoic Acid has three isomers: o (ortho), m (meta), and p (para). o-Aminobenzoic Acid has lactogenic effects in mammals and is also known as vitamin L1. p-Aminobenzoic Acid is a precursor of folate in vivo. Aminobenzoic Acid is synthesized in vivo as a precursor to folate.

Uses of Aminobenzoic Acid

Among aminobenzoic acids, o-aminobenzoic Acid is used as a reagent for the analysis of metal ions such as cadmium, mercury, and zinc. It can also be used in the synthesis of dyes.

In contrast, p-aminobenzoic Acid is mainly used in the field of cosmetics and is used in supplements as an ingredient to assist in skin whitening because it inhibits ultraviolet rays from penetrating deep into the body and skin. As a pharmaceutical product, it can also be used as a treatment for irritable bowel syndrome.

In addition, derivatives of the esters and amides of Aminobenzoic Acid are used as local anesthetics.

Properties of Aminobenzoic Acid

o-Aminobenzoic Acid is a colorless to yellow flake or white to yellow crystalline powder. It has a density of 1.41 and a melting point of 146-148°C. o-Aminobenzoic Acid forms chelate complexes with a variety of metal ions, including mercury and cadmium. Under weakly acidic conditions the complexes form precipitates.

p-Aminobenzoic Acid is a white crystal with a melting point of 187-189°C.

Structure of Aminobenzoic Acid

The chemical formula of Aminobenzoic Acid is C7H7NO2. One amino group (-NH2) and one carboxy group (-COOH) are attached to the benzene ring. Molar mass is 137.14.

Another name for o-Aminobenzoic Acid is Anthranilic Acid. On the other hand, p-Aminobenzoic Acid is also called 4-Aminobenzoic Acid.

Other Information on Aminobenzoic Acid

1. o-Aminobenzoic Acid Synthesis

Aminobenzoic-Acids_アミノ安息香酸-1.

Figure 1. o-Aminobenzoic acid basic information

In vivo, o-aminobenzoic acid is synthesized from glutamine and chorismic acid by anthranilate synthase in the shikimic acid pathway, which is involved in the synthesis of tryptophan. Aminobenzoic Acid is a precursor to a wide variety of alkaloids.

Aminobenzoic Acid is also biosynthesized by kynurenine in the kynurenine pathway, a tryptophan metabolic pathway.

2. Synthesis of p-Aminobenzoic Acid

Aminobenzoic-Acids_アミノ安息香酸-2

Figure 2. p-Aminobenzoic acid basic information

As a precursor to folic acid, p-aminobenzoic Acid is synthesized in vivo. p-Aminobenzoic Acid is an essential nutrient for fungi, but not for humans. The fungal enzyme converts p-aminobenzoic Acid to folic acid, but humans do not have dihydropteroate synthase.

Sulfa drugs, which are structurally similar to p-aminobenzoic Acid, inhibit the enzyme and exhibit antibacterial activity selectively against fungi.

3. Related Compounds of Aminobenzoic Acid

Aminobenzoic-Acids_アミノ安息香酸-3

Figure 3. Related compounds of aminobenzoic acid

Methyl anthranilate, the ester of o-Aminobenzoic Acid and methanol, is a fragrance component found in jasmine and grapes. Therefore, its main use is as a flavoring agent. Methyl anthranilate is also potent as a bird repellent and is used to protect rice, fruits, corn, sunflowers, and golf courses.

Ethyl 4-aminobenzoic Acid, the ethyl ester of p-aminobenzoic acid, is available as a local anesthetic; ethyl 4-aminobenzoic acid can numb sensory nerves and block the transmission of pain. It is formulated as an oral medication in anti-motion sickness and gastrointestinal medications to reduce nausea and stomach pain. It is also used in ointments for topical application to relieve itching and pain from insect bites, external wounds, and hemorrhoids.

カテゴリー
category_usa

Aminophenol

What Is Aminophenol?

Aminophenol is an organic compound where one hydrogen atom on the benzene ring of phenol is replaced by an amino group. It exists in three isomers: o-aminophenol (ortho-aminophenol), m-aminophenol (meta-aminophenol), and p-aminophenol (para-aminophenol), all solid at room temperature. The ortho form is white or pale yellow and needle-like, the meta form is white, and the para form is colorless platelet crystals, which gradually oxidize in air and turn brown.

The molecular weight of aminophenol is 109.13, with densities of 1.328 g/cm3 for ortho, 1.276 g/cm3 for meta, and 1.13 g/cm3 for para. Water solubility varies among the isomers: 2.0 x 103 mg/L for ortho, 26 g/L for meta, and 16 g/L for para.

Uses of Aminophenol

All three isomers of aminophenol are important building blocks in synthetic organic chemistry. Specific uses include the synthesis of acetaminophen from p-aminophenol, heterocycle synthesis from o-aminophenol, and 3-(diethylamino)phenol from m-aminophenol, an intermediate in fluorescent dye synthesis. o-aminophenols are used by photographic developers, while m-aminophenols find applications as dyes, thermosensitive dyes, agrochemicals, and aramid fiber materials. p-aminophenols are used as antioxidants for rubber, oxidative dyes for fur, and also as a photographic developer like o-aminophenol.

Principle of Aminophenol

1. Production Method of Aminophenol

o-aminophenol and p-aminophenol can be produced by reducing a mixture of o-nitrophenol and p-nitrophenol, obtained from the nitration of phenol. The synthesis of m-aminophenol requires a different route, such as melting 3-aminobenzene sulfonic acid with sodium hydroxide or substituting resorcinol with ammonium hydroxide.

2. Properties and Chemical Reactions of Aminophenol

o-Aminophenol forms intra- and intermolecular hydrogen bonds. Its amino groups can be diazotized for dye synthesis, and diazotized o-aminophenol compounds are useful as tridentate ligands to form metal complexes.

Types of Aminophenol

Aminophenols are available as reagent products for research and development, as well as oxidative

カテゴリー
category_usa

Amitriptyline

What Is Amitriptyline?

Amitriptyline, also known as Tryptanol, is a member of the tricyclic antidepressant family. It was the first developed antidepressant and is used as a hydrochloride salt in pharmaceuticals and pharmacological research. Amitriptyline affects neurotransmitters in the brain and plays a role in biological phenomena at minute levels.

Uses of Amitriptyline

Primarily used as an antidepressant, amitriptyline relieves anxiety, depressed mood, and lethargy in humans. It improves the function of noradrenaline and serotonin in the brain, facilitating neurotransmission. Additionally, it is used to treat chronic nerve-related pain, migraines, tension-type headaches, and nocturia due to its sedative effects.

Properties of Amitriptyline

Amitriptyline is a white or light brown crystalline powder with a melting point of around 196°C. It is soluble in water, ethanol, acetone, and acetic acid, but insoluble in diethyl ether. It has the chemical formula C20H23N, a molecular weight of 277.403 g/mol, and a bitter and paralyzing taste. As a tricyclic compound, it contains three connected rings, including a benzene ring at each end.

Other Information on Amitriptyline

1. Amitriptyline Action

Amitriptyline acts on neuronal receptors involved in neurotransmission, inhibiting the reuptake of noradrenaline and serotonin. Clinical effects usually occur one to two weeks after starting treatment.

2. Efficacy of Amitriptyline

It is considered an option for treating neuralgia and is as effective as Pregabalin, Duloxetine, and Gabapentin in the treatment of painful diabetic neuropathy.

3. Side Effects of Amitriptyline

Gradual reduction of amitriptyline is required to avoid withdrawal symptoms. Side effects include dry mouth, drowsiness, dizziness, constipation, urinary problems, and a risk of cardiogenic arrhythmias and self-injury. It may also increase the risk of suicidal thoughts and should be used with caution.

カテゴリー
category_usa

Abietic Acid

What Is Abietic Acid?

Abietic acid (chemical formula C20H30O2) is a colorless or yellowish crystalline powder obtained from pine resin. Also known as rosinic acid or silvic acid, it is primarily extracted from red pine and other pine plants. Pine resin is composed of essential oils and rosin, the latter being left over after distilling the essential oils from the resin.

Abietic acid is commonly used as a starting material in organic synthesis and as an antimicrobial disinfectant. It has a melting point of 350°F, is insoluble in water, and is soluble in organic solvents like ethanol, acetone, and benzene.

Uses of Abietic Acid

1. Industrial Raw Materials

Abietic acid is used in industry as a raw material for dyes, pigments, rubber sulfurization accelerators, synthetic resins, and plastics. Its metallic salt form is utilized in paper manufacturing as an anti-bleeding agent for ink. Methyl and glyceryl esters of abietic acid are used in surface coding paints and are also found in soaps, plastic products, cosmetics like mascara, and as a fermentation accelerator.

2. Antibiotics

In medicine, abietic acid is sometimes used as an antibiotic due to its natural origin and effectiveness in inhibiting the growth of microorganisms, with a lower risk of side effects compared to chemically synthesized antibiotics.

3. Bactericidal Agent

As a bactericidal agent, abietic acid is used for indoor and outdoor disinfection, food preservation, antibacterial toilet seats, and dental nail polish agents to inhibit cavity-causing bacteria.

Properties of Abietic Acid

Abietic acid is insoluble in water but soluble in organic solvents like ethanol, acetone, and dichloromethane. Chemically unstable, it oxidizes and decomposes when exposed to air, hence requiring careful storage. The acid can be stabilized by converting it into a sodium salt.

Abietic acid is a terpenoid, a compound formed from isoprene units, and belongs to the class of carboxylic acids with a diterpene skeleton.

Other Information on Abietic Acid

1. Production Methods

Abietic acid is extracted from pine sap and obtained by distilling the resin-acid mixture with superheated steam. This traditional method is still commonly used in modern industrial production.

2. Safety Information

While abietic acid has not been reported to adversely affect human health, excessive use may cause skin and respiratory irritation. Proper ventilation and protective equipment are recommended during handling to avoid irritation and allergic reactions.

カテゴリー
category_usa

Isoamyl Acetate

What Is Isoamyl Acetate?

Isoamyl acetate, officially known as isopentyl{[2-(diethylamino)ethyl]amino}(phenyl)acetate and commonly called camylofin, has various aliases including acamylophenin, adpon, avocan, syntespasmil, spasmocan, nabadil, novospasmin, and belosin. It is a pale yellow, oily substance at room temperature with a melting point of 77°F and a boiling range of 330°F to 355°F.

Isoamyl acetate is toxic and can cause acute toxicity if ingested. It poses a danger due to the toxic NOx gases produced by its thermal decomposition and should be handled with care.

Uses of Isoamyl Acetate

As an antispasmodic and antimuscarinic drug, isoamyl acetates are used to treat a variety of conditions. Similar muscarinic choline receptor antagonists include atropine, hyoscitamine, scopolamine, and pilesepine. These drugs are commonly used in the treatment of respiratory disorders like overactive bladder, bradycardia, and asthma, as well as neurological disorders such as Parkinson’s disease and Alzheimer’s disease.

Additionally, isoamyl acetate is effective in treating abdominal pain, particularly in infants and children, and is often combined with acetaminophen to address fever and abdominal pain.

カテゴリー
category_usa

Aniline

What Is Aniline?

Aniline, also known as aminobenzene, phenylamine, and benzeneamine, is an aromatic amine with the chemical formula C6H5NH2. It is a clear, colorless liquid at room temperature that gradually turns reddish brown when exposed to air. Aniline is toxic and can cause poisoning through inhalation or skin absorption. Therefore, it must be handled with care.

Uses of Aniline

Aniline is primarily used as a raw material in various industries. It’s used in the production of dyes, pigments, rubber sulfurization accelerators, synthetic resins, plastics, conductive polymers like polyaniline, and in the manufacture of pharmaceuticals, pesticides, herbicides, fungicides, and other chemicals.

Properties of Aniline

Aniline has a molecular weight of 93.13, is weakly basic, and has an amine odor. It has a specific gravity of 1.022, a melting point of -6°C, and a boiling point of 184°C. It is insoluble in water but soluble in organic solvents like ether, ethanol, and benzene. Aniline reacts with metals to produce hydrogen and anilide.

Other Information on Aniline

1. Aniline Production Methods

There are three industrial methods for producing aniline: reduction of nitrobenzene with hydrochloric acid, catalytic reduction of nitrobenzene with hydrogen, and ammonia substitution reaction of chlorobenzene. These methods involve various chemical reactions and catalysts to obtain aniline.

2. Safety of Aniline

Aniline is toxic and can be absorbed through the skin and mucous membranes, causing anemia, kidney and liver damage, nerve damage, and dermatitis. Protective measures are essential when handling aniline, including skin and eye protection and proper ventilation.

3. About Polyaniline

Polyaniline is a conductive polymer made from aniline. Its properties depend on the pH of the solution used during electrolytic polymerization. Conductive polyaniline is produced in acidic solutions while insulating polyaniline is formed in neutral or alkaline solutions.

カテゴリー
category_usa

Adrenaline

What Is Adrenaline?

Adrenaline, also known as epinephrine, is a catecholamine with the molecular formula C9H13NO3. It is a hormone secreted by the adrenal glands and a neurotransmitter in the nervous system. Adrenaline is the term used in American English, while epinephrine is often used in medical contexts and the European Pharmacopoeia. It is a white to brown powdery solid at room temperature, turning brown when exposed to air and light. It is soluble in diluted hydrochloric acid but extremely insoluble in water and organic solvents like ethanol, diethyl ether, and chloroform. Adrenaline is a chiral compound, typically referring to the R (-) form.

Adrenaline is secreted in response to stress or excitement in living organisms.

Uses of Adrenaline

Adrenaline is used clinically for the treatment of anaphylactic reactions, bronchospasm in asthma and whooping cough, acute hypotension or shock, cardiac arrest, prolonging the action of local anesthetics, preventing and treating local bleeding during surgery, and dental treatments. It is also a research reagent in synthetic organic chemistry and biochemistry.

Properties of Adrenaline

1. Adrenaline Synthesis

Adrenaline is synthesized biosynthetically from L-tyrosine, progressing through L-dopa, dopamine, noradrenaline, and finally to adrenaline.

2. Physiological Effects of Adrenaline

Adrenaline stimulates sympathetic alpha and beta-adrenergic receptors, affecting heart rate, blood vessel constriction, and bronchial relaxation. It should not be used with alpha-blocking drugs like butyrophenones, phenothiazines, iminodibenzyls, zotepine, serotonin and dopamine antagonists, and dopamine receptor partial agonists due to potential adverse reactions.

Types of Adrenaline

Adrenaline products include clinical injectables and inhalants for treating asthma and other conditions, and research reagents. Available in various doses and concentrations, typical products are Epista, Bosmin, and EpiPen, which require a prescription. For R&D, adrenaline is available in various capacities like 1 g, 5 g, and 10 g, usually as R-body compounds or hydrochloride salts, requiring refrigerated storage.

カテゴリー
category_usa

Adenine

What Is Adenine?

Adenine is an organic compound with a purine skeleton, also known as 6-aminopurine and 9H-Purin-6-amine in IUPAC nomenclature. It is one of the five nucleobases in nucleic acids, widely present in living organisms. Adenine is a colorless or pale yellow solid at room temperature with a molecular formula of C5H5N5, a molecular weight of 135.13, and decomposes at a melting point of 680°F. It is insoluble in water, ethanol, and acetone, but soluble in dilute hydrochloric acid, sodium hydroxide, and ammonia.

Uses of Adenine

Adenine is a component of nucleic acids like DNA and RNA. It is used to treat leukopenia caused by radiation exposure or drugs, in semiconductor corrosion prevention, and sex identification of fish.

Principle of Adenine

Adenine acts as a base with pKa values of 4.15 and 9.08, being part of DNA and RNA. Its corresponding nucleosides are adenosine (A) and deoxyadenosine (dA), forming hydrogen bonds with thymine in DNA and uracil in RNA. It is also a component of coenzymes A, FAD, NAD, and the energy substance ATP.

Synthesis of Adenine

In vivo, adenine is biosynthesized by purine metabolism, converting ribose-5-phosphate to inosinic acid (IMP), then to adenylic acid (AMP) and guanosine monophosphate (GMP). Industrially, it is synthesized by heating formamide, with increased yields using phosphoryl chloride (POCl3) or phosphorus pentachloride (PcL5) as acid catalysts.

Types of Adenine

As a drug, adenine is available in 10 mg tablets for treating radiation exposure and drug-induced leukopenia. It is also sold as a research reagent, available in various purities, and packaged in quantities like 1g, 25g, 100g, and 250g. It should be stored at room temperature, away from light, and mindful of hazardous decomposition products like CO, CO2, and NOx.

カテゴリー
category_usa

Azobenzene

What Is Azobenzene?

Azobenzene is an organic compound consisting of two benzene rings linked by an azo group (a nitrogen-nitrogen double bond). Its IUPAC name is diphenyldiazene, with a CAS number of 103-33-3 and a molecular weight of 182.22. Azobenzene has a melting point of 155°F and a boiling point of 560°F, existing as a solid at room temperature. It is insoluble in water, but soluble in organic solvents like ether, benzene, and alcohol.

The term “azobenzene” sometimes collectively refers to a group of aromatic azo compounds with various functional groups on the benzene ring.

Uses of Azobenzene

Azobenzene, including its derivatives, is widely used as a dye or pigment due to its ability to absorb visible light. Its rod-shaped structure also makes it useful as a mesogen group in liquid crystals. Azobenzene and its derivatives exhibit photochromic properties, undergoing trans-to-cis isomerization upon photoirradiation. These compounds are applied in fields such as light control materials, optical recording materials, optical switches, and functional inks.

Principle of Azobenzene

Azobenzene is characterized by its strong absorption of light in the ultraviolet and visible regions, making it suitable for use as a dye. The trans form of azobenzene is yellow, while the cis form is orange. Azobenzene has both cis and trans conformational isomers, with the trans form being more stable due to reduced steric repulsion between the benzene rings.

Light irradiation or heating can control the ratio of these isomers, a process known as photoisomerization and thermal isomerization. Irradiating trans azobenzene with light of 300-400 nm wavelength converts it to the cis form, and vice versa with light of 400 nm or longer.

Chemical Reactions of Azobenzene

Azobenzene is synthesized from nitrobenzene with tin (II) chloride and sodium hydroxide or sodium amalgam. Its oxidation yields azoxybenzene and hydrogenation produces 1,2-diphenylhydrazine. Azobenzene is also known as a metal ligand, forming complexes with metals like nickel.

Types of Azobenzene

Available azobenzene types include standard samples for melting point determination and reagent products in various volumes. Its derivatives are widely used as dyes, with typical compounds being methyl red and methyl orange. Derivatives are usually synthesized through diazo coupling due to the electron-rich nature of the substituted aromatic rings.