マイクロスコープとは
マイクロスコープ(英語: Microscope)とは広義に顕微鏡のことで、対象物を拡大して観察するための機器です。ただし、マイクロスコープと言えば一般的にデジタルカメラを搭載した顕微鏡のことを指し、光学顕微鏡と区別されています。光学顕微鏡に比べて焦点深度が深く、角度や長さを計測する機能があるのが大きな特徴です。
光学顕微鏡は対物レンズと接眼レンズの2つのレンズがありますが、マイクロスコープは対物レンズのみで、接眼レンズに相当する部分がデジタルカメラとなっています。この点が光学顕微鏡とマイクロスコープの最も大きな違いともいえるでしょう。マイクロスコープの場合は通常、観察対象をモニターに映します。
各メーカーから様々な機種が発売されており、拡大倍率は数倍から数千倍と幅広いラインナップが用意されています。
マイクロスコープの使用用途
マイクロスコープは、対象物を拡大して観察するだけではなく、得られた画像データから各種評価や解析を行うことができます。
自動車・航空関連、電子デバイス業界、医療・化粧品業界、化学・材料業界などの様々な分野で導入されており、研究開発から品質保証まで幅広い用途で使用されています。
例えば、電子部品の故障解析では、ICチップの外観検査や不良品の故障解析、異物混入検査や発見された異物のサイズや形状の解析などがマイクロスコープで行うことが可能です。
マイクロスコープの原理
マイクロスコープは、光学レンズ(対物レンズ)で対象物を拡大し、光学顕微鏡ではヒトの眼に当たる部分がデジタルカメラとなっています。光学レンズで拡大された像を撮像素子で検出し、モニターにその画像を映し出します。
光学顕微鏡の拡大倍率は、対物レンズと接眼レンズの倍率の積で表されますが、マイクロスコープの場合は、モニターサイズやカメラの撮像素子サイズが観察倍率に影響し、その点が光学顕微鏡の倍率の考え方と異なります。
マイククロスコープの倍率も対物レンズの倍率とモニターの倍率の積で表されます。モニターの倍率は、モニターサイズを撮像素子サイズで除した数値です。
対象物をより詳細に観察するには、倍率以外に分解能という細部を識別する性能が必要です。分解能が十分でない場合、観察画像がぼやけてしまい、細部を鮮明に観察することができません。マイクロスコープの場合は、対物レンズやデジタルカメラの光学レンズの分解能、撮像素子の解像度、モニターの解像度が分解能に影響しています。
観察する対象物や目的に合わせて最適な倍率と分解能が得られる機種を選定する必要があります。これらの高度な分解能の処理能力のユーザー要求に対応すべく、最近では4Kモニタタイプの画像も登場しています。
マイクロスコープのその他の情報
1. マイクロスコープの歯科治療での利用
マイクロスコープの用途の一つとしては歯科治療での利用があげられます。マイクロスコープの焦点調整機能を生かすことで、肉眼では検知しにくい微細な患部の観察が可能となります。
特に、根管治療と呼ばれる虫歯菌の完全な除去を行う際には、マイクロスコープによって治療者の視認性をあげ、可能な限り患部を削りきるという手法が使われます。肉眼ではどうしても患部の確認に限界があり、見落としによる患部取り残しのリスクがあります。
マイクロスコープを用いることで、治療の質を向上させ、患部取り残しによる再発リスクを低減することができます。ただし、マイクロスコープを用いた歯科治療は原則として保険適用外の自費診療となっていることに留意が必要です。
2. マイクロスコープの美容利用
マイクロスコープは、美容整形や頭皮のチェックなどの美容関連の治療・診断にも用いられます。マイクロスコープで拡大した肌を見ることで、皮膚の乾燥状況や毛じらみの発生状況などを視認し、患部の状態を判断することができます。
美容整形などをうけるクライアントとしても、自身の肌や頭皮の状態を画面で確認することができるため、診察に対して納得感を得ることができます。また、状態改善のための動機付けとなる側面もあります。
3. 最新のマイクロスコープの機能事例
昨今のマイクロスコープは、真空での観察が必要な走査型電子顕微鏡(SEM)に代わって、数ミクロン単位の電子部品や半導体ICの内部の詳細解析にも多用されています。そのために実用上、数ミリから数ミクロンといった具合に、観察の途中において桁で大きく倍率や解像度を上げていかなければなりません。
この操作には、光学顕微鏡と同様に対物レンズを交換していく必要がありますが、近年のマイクロスコープにはこのレンズ変更のための自動回転やレンズ変更時の自動焦点合わせ機能を内蔵し、ほぼ全自動でこの工程を行ってくれるものがあります。
画像処理についても倍率の高い画像を、畳のように縦横に並べて大きな1枚の画像に合成してくれる機能や、画像の焦点調整機能を活用して、対象物を3次元(3D)的に立体的な画像に処理してくれるような高機能なタイプも登場しているのです。
これらの機能を組み合わせて、半導体ICの配線チェックや、電子部品の内部欠陥箇所の不良解析に活用されている事例もあります。
4. マイクロスコープの価格
マイクロスコープは、その用途や性能によって値段が異なります。倍率や視野範囲が狭いマイクロスコープであれば1万円前後から取り扱いがありますが、美容成形や頭皮等の簡単な検査目的で利用するものであれば5万円程度、医療目的で利用されるものは10万以上という価格帯となっています。
さらに、半導体製造など製造業における製品検査用途として用いられるようなマイクロスコープには高い倍率やミクロン単位の高精細な高精細な画像表示が求められるため、数百万程度が一般的な価格帯となります。
手術や治療に用いる場合では画面表示の遅延が少なく、フレームレートが高いことも重要ですが、低遅延・高フレームレートのマイクロスコープは価格が高くなる傾向があります。また、レンズを交換することで表示倍率を拡大することができる製品なども販売されています。この場合画像処理能力も高度化され、専用のモニターや制御ソフトも高度化するために価格はさらに上昇します。
参考文献
https://www.shodensha-inc.co.jp/ja/
https://www.keyence.co.jp/products/microscope/digital-microscope/
https://xlab.leica-microsystems.com/blog/industrial/digital-microscope_magnification/
https://www.abe-shikaiin.net/pages/root.html
https://ureruzo.com/scopeSankou00.htm
https://www.asahikogakuki.com/microscope/ms-300/