カテゴリー
category_es

Pinturas Metálicas

¿Qué son las Pinturas Metálicas?

Las pinturas metálicas son un tipo de pintura con brillo metálico.

Las partículas microscópicas de metal y los pigmentos se dispersan en la pintura, y la luz se refleja y refracta en estas partículas para formar una película de pintura con un aspecto metálico único.

Las pinturas metálicas están disponibles en una amplia gama de colores y tipos. Las diferencias se deben al tamaño de las partículas metálicas y los pigmentos.

Usos de las Pinturas Metálicas

1. Industria del Automóvil

Las pinturas metálicas se utilizan en los exteriores y las llantas de los vehículos. Esto confiere al vehículo un bonito brillo bajo la luz del sol y la iluminación, creando una impresión lujosa y deportiva.

2. Fabricación de Muebles

El uso de pinturas metálicas en muebles de madera y metal confiere a los muebles un aspecto sofisticado. Es especialmente adecuado para diseños modernos y muebles de estilo industrial.

3. Diseño de Interiores

Las pinturas metálicas también se utilizan en el diseño de interiores, como paredes, techos y cortinas. Esto puede añadir brillo o acento al espacio en general.

4. Productos Industriales

Las pinturas metálicas pueden aplicarse a piezas metálicas y de maquinaria para mejorar su durabilidad y resistencia a la oxidación. También pueden utilizarse para mejorar el aspecto de los productos.

5. Productos Electrónicos

Las pinturas metálicas pueden utilizarse en el exterior de dispositivos electrónicos como smartphones, tabletas y ordenadores portátiles para crear un diseño lujoso y sofisticado.

6. Diseño de Envases

El uso de pinturas metálicas en el diseño de envases de productos puede realzar su valor y textura. Esto es especialmente habitual en envases para productos de lujo y eventos especiales.

7. Aplicaciones Decorativas

Las pinturas metálicas también se utilizan ampliamente para decorar obras de arte, artesanía y manualidades. Su brillo único puede utilizarse para crear proyectos creativos.

Principios de las Pinturas Metálicas

En las pinturas metálicas se dispersan uniformemente finas partículas metálicas (por ejemplo, aluminio, cobre, latón). Estas partículas metálicas son de tamaño microscópico y tienen la capacidad de reflejar y refractar la luz. Al secarse la pintura, las partículas metálicas se posicionan en la película. Esto significa que cuando la luz incide en las partículas metálicas, no sólo se refleja en la superficie metálica, sino que también se dispersa entre las partículas.

Las partículas metálicas microscópicas tienen un tamaño cercano a la longitud de onda de la luz y, cuando ésta incide sobre las partículas metálicas, se produce un efecto de interferencia de ondas. Esto realza ciertas longitudes de onda de la luz y acentúa el brillo y el lustre. Las partículas metálicas utilizadas en las pinturas metálicas tienen formas muy variadas, como escamas y esferas. Esto cambia el ángulo de reflexión y refracción de la luz, creando un efecto visual único.

Es importante que las partículas metálicas estén uniformemente dispersas en la película de pinturas metálicas. La uniformidad garantiza que la luz se refleje y refracte de manera uniforme, lo que se traduce en un bonito brillo.

Tipos de Pinturas Metálicas

1. Pinturas Metálicas de Aluminio

Estas pinturas se fabrican utilizando partículas de aluminio. Se caracterizan por el brillo plateado del aluminio y tienen una gran reflectividad a la luz y brillo. Se utilizan principalmente para exteriores de automóviles y motocicletas, muebles y piezas metálicas, proporcionando un bonito brillo metálico.

2. Pinturas Metálicas de Cobre

Estas pinturas se fabrican utilizando partículas de cobre. Tiene un efecto decorativo debido al tono rojizo y a la textura única del cobre. Se utiliza principalmente en objetos decorativos, obras de arte y piezas de acento de muebles, proporcionando un aspecto cálido.

3. Pinturas Metálicas de Bronce

Estas pinturas se fabrican con partículas de bronce y se caracterizan por la pesadez y calidez del metal. Se utiliza para decoración arquitectónica, muebles y esculturas y proporciona un aspecto antiguo.

4. Pinturas Metálicas de Acero Inoxidable

Fabricadas con partículas de acero inoxidable, estas pinturas se caracterizan por su brillo plateado y su durabilidad. Se utilizan principalmente para la protección de superficies de edificios exteriores, estructuras y productos metálicos, proporcionando resistencia a la intemperie y alto brillo.

5. Pinturas Metálicas Holográficas

Estas pinturas se fabrican utilizando partículas metálicas con efecto holográfico. Los distintos colores y dibujos cambian según el ángulo de la luz, proporcionando interés visual. Se utilizan principalmente en obras de arte y diseños especiales para conseguir un aspecto dinámico.

カテゴリー
category_es

Lacas

¿Qué es la Laca?

Las lacas son pinturas muy utilizadas en la industria y la vida cotidiana.

Se refiere a pinturas fabricadas a partir de resinas sintéticas, como las acrílicas, disueltas en disolventes volátiles como el tolueno o la acetona. Originalmente, el término laca se refería a la nitrocelulosa disuelta en disolventes orgánicos.

Sin embargo, ahora se utiliza como término genérico para las pinturas de secado rápido que utilizan disolventes volátiles. Se secan muy rápido y son fáciles de manejar, y se suelen utilizar en botes de spray.

Usos de las Lacas

1. Protección y Decoración de la Madera

Las lacas se aplican a las superficies de madera para mejorar su durabilidad y proporcionar un acabado bonito. Se utilizan en muebles, suelos y materiales de construcción para proteger eficazmente la madera y realzar sus cualidades decorativas.

2. Protección contra la Corrosión y Mantenimiento Estético de Metales

Cuando se aplican a superficies metálicas, las lacas sirven para evitar la oxidación y la herrumbre. También se utilizan para pintar coches y bicicletas y para decorar productos metálicos por su bonito brillo y color.

3. Protección y Modificación de Plásticos

Para los productos de plástico, las lacas también proporcionan una capa protectora que evita la decoloración y el deterioro. También se utilizan para modificar la superficie de los plásticos y añadirles propiedades específicas.

4. Dar Color y Diseño

Las lacas se utilizan en diseño y arte por su versatilidad de colores y brillo. Se aplican a muebles, artesanía y obras de arte para conseguir un aspecto distintivo.

5. Pintura para Aviones y Barcos

Los exteriores de aviones y barcos requieren durabilidad y resistencia a la intemperie. Las lacas se utilizan como pinturas para cumplir estos requisitos y seguir protegiendo el aspecto de barcos y aviones.

6. Acabados de Productos Industriales

En los productos industriales, las lacas también se utilizan en el proceso de acabado para garantizar un buen aspecto y durabilidad. Se aplican a piezas metálicas y superficies de máquinas para mejorar la calidad del producto.

7. Mayor Resistencia a las Altas Temperaturas

Algunos tipos de lacas tienen resistencia a altas temperaturas y se aplican a componentes y estructuras utilizados en entornos sometidos a calor. Esto aumenta la seguridad y la durabilidad.

8. Arte y Artesanía

Las lacas también se utilizan para el acabado de artesanía y obras de arte tradicionales. Se aplican a obras de arte y esculturas para proporcionar belleza y protección a la obra.

Principio de las Lacas

Cuando las lacas se aplican en estado líquido, su principal componente, el disolvente, se evapora en la atmósfera. La evaporación del disolvente hace que la pintura se seque rápidamente y pase a una forma sólida.

A medida que el disolvente se evapora, los componentes sólidos de la pintura empiezan a migrar gradualmente a la superficie. Esto da lugar a la formación de una fina película de pintura, cuyo espesor y uniformidad están regulados por las propiedades de la pintura.

La película formada en la superficie reacciona con el oxígeno, provocando reacciones químicas como la oxidación y la polimerización. Esto solidifica la película de pintura, formando una película uniforme y dura. Las propiedades de la película formada por las reacciones químicas vienen determinadas por la composición y los aditivos de la pintura. Las propiedades de la película, como la dureza, el brillo, la resistencia a la intemperie y la resistencia química, dependen del tipo de lacas y de la aplicación.

Las películas de laca también se adhieren a la superficie del sustrato y se caracterizan por su adherencia química o física. De este modo, la laca protege la superficie del sustrato al que se aplica y proporciona resistencia a fuerzas externas.

Tipo de Lacas

1. Lacas Nitrocelulósicas

Las lacas nitrocelulósicas son pinturas a base de nitrocelulosa. Son de secado rápido y proporcionan un brillo uniforme y protección a las superficies de madera y metal. Suelen utilizarse en instrumentos musicales y muebles, ya que forman una fina película y proporcionan un bonito acabado.

2. Lacas Acrílicas

Las lacas acrílicas son pinturas a base de resina acrílica. Se caracterizan por su gran resistencia a la intemperie y a la decoloración de la película de pintura. Se utilizan en exteriores de automóviles, productos de plástico y muebles, proporcionando durabilidad y un bonito acabado.

3. Lacas de Uretano

Las lacas de uretano son pinturas basadas en resinas de uretano. Tienen una excelente resistencia a la abrasión y a los productos químicos y se utilizan ampliamente en madera, metal y plásticos. Se emplean en muebles, suelos e interiores de automóviles y forman una película dura que proporciona protección a largo plazo.

4. Lacas Esmaltadas

Las lacas esmalte son pinturas que combinan resinas duras y pigmentos. Son muy duraderas y se utilizan sobre metal, cerámica y vidrio. Muy utilizadas en maquetas, productos industriales y objetos decorativos, proporcionan un bello acabado y protección.

5. Goma Laca

La goma laca es un barniz natural a base de secreciones de insectos. Sirve para proteger superficies de madera y muebles, añadiendo brillo y profundidad. Se utiliza para recubrimientos alimentarios y farmacéuticos y para el acabado de instrumentos musicales.

カテゴリー
category_usa

CLIMOMASTER Anemometer

What Is a CLIMOMASTER Anemometer?

The CLIMOMASTER anemometer is a multifunctional anemometer developed by Kanomax, Japan. It is designed for measuring indoor environments and can simultaneously measure wind speed, air temperature, and humidity. Notable for its high accuracy of 2%, the CLIMOMASTER anemometer operates in a broad temperature range from -20°C to 70°C. Users can switch probes based on their specific requirements, making it suitable for diverse applications such as indoor air environment assessment and HVAC system maintenance.

Applications of the CLIMOMASTER Anemometer

Key applications of the CLIMOMASTER anemometer include:

  • Indoor environment assessment, in compliance with the Building Sanitation Law.
  • Maintenance and management of air conditioning systems in buildings and factories.
  • Assessment of smoke separation effectiveness under the Health Promotion Law.
  • Evaluation of air velocity in electronic devices for cooling effectiveness.
  • Performance testing in various industrial sectors.

Principle of the CLIMOMASTER Anemometer

The CLIMOMASTER anemometer operates on the principles of a hot-wire anemometer and a capacitive hygrometer:

1. Hot-Wire Anemometer Principle

It measures wind speed by detecting changes in resistance or current caused by airflow impacting a heated sensor. The device uses a constant-temperature type hot-wire anemometer for superior feedback control.

2. Hygrometer Principle

The capacitive type hygrometer in the CLIMOMASTER measures humidity based on changes in capacitance caused by moisture absorption and desorption in a polymer thin film.

Features of the CLIMOMASTER

The CLIMOMASTER anemometer is portable, yet offers a range of functions and high measurement accuracy. It features eight types of interchangeable probes, catering to various wind speed measurement ranges and applications, including omnidirectional probes for measuring wind speed without concern for orientation.

カテゴリー
category_usa

Explosion-Proof Motor

What Is an Explosion-Proof Motor?

Explosion-proof motors are electric motors designed for safe operation in potentially explosive environments.

They find use in locations where explosive gases, dust, and other hazardous materials are present, such as chemical plants and mining sites. The utilization of explosion-proof motors enhances safety in these environments by preventing internal sparking and ignition, thus reducing the risk of explosion and fire.

These motors also play a crucial role in safeguarding worker well-being. In environments containing explosive gases or other dangerous substances, the use of standard motors increases the risk of ignition or explosion. As a result, the deployment of explosion-proof motors is essential to protect the health and safety of workers.

Explosion-proof motors are meticulously designed and manufactured in compliance with specific regulatory standards, ensuring their adherence to legal requirements and safety protocols. Additionally, accredited bodies may assess and approve explosion-proof motors, ensuring their reliability and high quality.

Applications of Explosion-Proof Motors

Explosion-proof motors are employed across various industries, including chemical plants, mining, and the oil and gas sector.

1. Chemical Plants

Chemical plants use mixers to blend various raw materials, sometimes in the presence of explosive gases or powders. Explosion-proof motors drive these mixers, ensuring safety even when handling explosive gases.

They may also be used in exhaust and ventilation systems, where blowers are driven by explosion-proof motors to safely expel explosive gases.

2. Oil and Gas Industry

In gas plants, gas compression and pumping equipment are often employed. Explosion-proof motors are essential in gas compressors to prevent ignition or explosions.

Oil refineries use equipment like distillation columns and reactors as part of the refining process. These units require explosion-proof motors to operate safely.

3. Mining Industry

Mining operations involve crushing ore into powder using crushers and transporting the ore. These processes generate gas and dust emissions, making ventilation crucial. Explosion-proof motors are used in ventilation systems within crusher facilities to eliminate explosive gases and dust.

Conveyors are also used for transporting ores and materials, which can be hazardous as they are prone to ignition from sparks. Explosion-proof motors drive conveyors to safely transport ores in potentially flammable environments.

Principle of Explosion-Proof Motors

Explosion-proof motors are designed with enclosures or casings that prevent internally generated sparks from escaping to the external environment. These enclosures protect electrical and electronic components and are manufactured according to stringent regulations to ensure explosion-proof performance.

Furthermore, explosion-proof motors are equipped with protection devices that automatically shut down in case of overcurrent. Overcurrent protection is crucial as extended overcurrents can lead to overheating of electromagnetic components and potential fires.

Additionally, these motors include protective devices that halt operation upon detecting overheating. Excessive heat can deteriorate insulating materials, posing fire hazards.

Types of Explosion-Proof Motors

Explosion-proof motors can be categorized into three main types: safety-increased explosion-proof motors, internal pressure explosion-proof motors, and explosion-proof motors.

1. Safety-Increased Explosion-Proof Type

These motors are designed for safe operation in environments containing internal sparks and sparks mixed with explosive gases. Also known as safety-increased (anmashi) motors, they are constructed to prevent ignition and can be used safely in hazardous atmospheres.

Specifically, the motor windings are designed to operate at lower temperatures than standard motors, reducing the risk of ignition. Moreover, the separation between terminals is wider to prevent sparking.

2. Internal Pressure Explosion-Proof Type

Internal pressure explosion-proof motors are protected against the entry of flammable gases by maintaining a constant injection of inert gas, such as nitrogen, into the interior. The internal pressure remains higher than the ambient environment, preventing flammable gases from entering. These motors are suitable for use in atmospheres with flammable gases but require inert gas injection equipment.

3. Explosion-Proof Type

Explosion-proof motors of this type are designed with special constructions to ensure that an explosion inside the motor does not serve as an ignition source, even if flammable gases enter and cause an explosion. The casing has a robust design to withstand explosions, and a pressure-relief device is incorporated to safely release pressure inside the casing, preventing damage or rupture.

カテゴリー
category_usa

Gas Generator

What Is a Gas Generator?

A gas generator is a device that converts gas into electrical energy, typically functioning as an internal combustion engine. Their advantages include lower fuel costs, a stable fuel supply, high efficiency in electricity generation, and lower CO2 emissions compared to heavy oil or gasoline generators. They can also use biogas for even more eco-friendly operations. However, challenges include higher initial costs and the need for a fuel supply infrastructure. Adequate exhaust and noise control measures are necessary due to combustion by-products.

Uses of Gas Generators

Gas generators are used in various applications and fields, serving in both regular and emergency capacities:

  • Regular Use: In factories and power plants for continuous power generation and as a dual source of electricity and heat.
  • Emergency Use: In office buildings and shopping malls as backup power sources to ensure uninterrupted operations during power outages.

Gas Generator Principle

Gas generators operate by intaking combustible gases such as propane gas, mixing them with air, and igniting the mixture to produce high-pressure, high-temperature gas. This gas powers rotating equipment connected to a generator, transforming rotational energy into electrical power. Exhaust gas treatment systems are often implemented to minimize environmental impact.

Types of Gas Generators

  • Gas Engine Generator: Uses gas expansion to turn an engine, generating electricity efficiently even in smaller sizes. Requires frequent maintenance due to wear.
  • Gas Turbine Generator: Employs continuous gas combustion to turn a turbine, known for low running costs and high heat recovery rates, making it suitable for facilities with high heat usage. However, it has lower power generation efficiency compared to engine methods.
カテゴリー
category_usa

Embossed Film

What Is Embossed Film?

An embossed film refers to a film that has been treated to create an uneven surface finish through heating and pressurizing. The term “embossed” highlights this textured finish, which can improve the film’s tactile qualities, slipperiness, and peelability. These films come in various patterns like diamond, silk, and linen, each offering distinct characteristics. Materials for embossed films include polyethylene, silicone, and polyurethane.

Uses of Embossed Films

Embossed films have diverse applications, such as:

  • Packaging materials.
  • Semiconductor transport.
  • Serving as separators.
  • Providing slipping properties.
  • Diaper backsheets, pocket tissue packaging, liquid containers, and laminating materials (polyethylene).
  • Waterproof suits, transdermal absorbent base materials, clothing, wound dressings, and non-slip tapes (elastomer films).

Principle of Embossed Films

Embossed films are created by deforming the film surface through heat and pressure, resulting in patterns or unevenness. These features can add visual appeal and tactile sensations, with applications in packaging, decoration, and visual effect prints. The design possibilities are flexible, allowing for various patterns and textures tailored to specific needs.

Types of Embossed Films

  • Dot Emboss Film: Features small dots of unevenness, used for visual texture and non-slip effects.
  • Metal Embossed Film: Reproduces the texture and luster of metals, enhancing product or brand image.
  • Transparent Embossed Film: Used for creating transparency and three-dimensional effects in packaging and displays.
  • Sheet-Type Embossed Film: Uniformly embossed for consistent appearance, applied in cards, panels, and decorative items.
  • Custom Embossed Film: Tailored for specific designs or patterns, often used for unique branding or advertising materials.
カテゴリー
category_usa

Air Regulator

What Is an Air Regulator?

An air regulator is a device designed to control the pressure of compressed air, reducing it from a high to a manageable low level. It adjusts the pressure and flow rate for specific operations or processes, equipped with a pressure adjustment knob for varying output pressure. This adjustment is crucial for the safety and efficiency of equipment and systems, helping to prevent excessive pressure buildup and ensuring energy-efficient operation.

Applications of Air Regulators

Air regulators are widely used in:

  • Manufacturing Industry: For controlling compressed air in equipment like airlifts and tools such as paint sprayers and impact wrenches.
  • Medical Industry: In medical equipment requiring precise pressure control, such as oxygen supply systems and ventilators.

Principle of Air Regulators

Air regulators typically consist of:

  • Main Body: Usually made of metal or plastic, serving as the housing and connection point.
  • Pressure Regulator: A mechanical structure like a spring or diaphragm that adjusts the control valve’s opening in response to pressure changes.
  • Control Valve: Adjusts pressure by modulating the flow path through the opening and closing of a valve plug and seat.

How to Select an Air Regulator

Key factors to consider when selecting an air regulator include:

  • Pressure Range: Choose a regulator that accommodates the operating pressure range required for your application.
  • Connection Method: Consider the method of piping connection, typically screw-in types with different standards for airtightness.
  • Specifications: Look for additional features like filter regulators for moisture removal or compact designs for specific applications.
カテゴリー
category_usa

Urethane Adhesive

What Is Urethane Adhesive?

Urethane adhesives are based on the urethane reaction, an addition reaction of polyisocyanate and polyol. Comprising mainly urethane resins, these adhesives come in one-component, two-component, and hot-melt types, with the two-component variant being widely used for structural applications. They exhibit high adhesion, particularly to resins, and are more flexible than epoxy or acrylic adhesives, providing high impact resistance and shock absorption.

Applications of Urethane Adhesives

Urethane Adhesives are used in various industries, such as:

  • Automotive: For bonding parts and panels, improving strength, noise reduction, and ride comfort.
  • Construction: Bonding building materials, fixing insulation, and in window frames and doors.
  • Furniture Manufacturing: Bonding wood and plywood, contributing to durable furniture production.
  • Electronics: Securing circuit boards and components, and protecting cables.
  • Shoe Manufacturing: Bonding shoe soles for enhanced strength and durability.
  • Packaging: Bonding and sealing packaging materials for safety and hygiene.
  • Aerospace: Manufacturing lightweight and strong components for aircraft.

Principle of Urethane Adhesive

Urethane adhesives form strong bonds through chemical reactions between isocyanates and polyols, creating urethane bonds. They also provide physical bonding by being highly viscous and curing on the substrate, improving bond strength.

Types of Urethane Adhesives

  • Single-Component: Easy to use, suitable for DIY and small-scale jobs.
  • Two-Component: Offers controlled curing, higher strength, and durability, ideal for industrial applications.
  • Flexible: Suitable for applications requiring high durability and flexibility.
  • High Strength: Used for bonding metals and various materials in harsh environments.
  • Heat-Resistant: Ideal for high-temperature environments, such as engine parts.
  • Food Contact: Safe for use in food processing and pharmaceutical industries.

Other Information on Urethane Adhesives

Importance of Surface Preparation

Effective adhesion of urethane adhesives requires proper surface preparation of the substrate. Cleaning and treating the surface ensures optimal bonding and strong adhesion.

カテゴリー
category_usa

In-Line Viscometer

What Is In-Line Viscometer?

In-Line Viscometer is a measuring instrument used to determine the viscosity of a fluid in a tank containing piping or liquid material.

The viscosity of a fluid is called In-Line Viscometer because the device is installed directly on the manufacturing line, etc., where the viscosity of the fluid is measured, and many digital products are used to calculate the viscosity in real time. In-Line Viscometers are used not only to measure viscosity, but also as switches to activate other safety devices, adjust flow rates, stirring speeds, etc. based on the measured values.

In-Line Viscometer Applications

In-Line Viscometers are used in chemical, industrial, and food processing plants. When selecting an In-Line Viscometer, it is important to consider the flow rate, viscosity, measurement accuracy, ease of maintenance, and ease of monitoring output.

In addition, since viscosity changes depending on temperature, a product that can simultaneously measure the temperature of the measuring section is suitable if the temperature or other environmental factors change during the plant process.

The following are examples of In-Line Viscometer applications.

Monitoring the degree of mixing during stirring operations in a chemical plant
Control of food conditions in transport pipes in food factories
Viscosity control of paints in paint manufacturing processes
Viscosity control of coating materials in paper mills
In-Line Viscometer Principle
Most In-Line Viscometers calculate the viscosity of a fluid based on the amount of resistance to torsional rotation. This type of viscometer is sometimes described as an oscillating type because it measures viscosity by applying torsional vibration to a rod.

In-Line Viscometer of the vibrating type has two inertial masses with the same mass of inertia attached to both ends of a long, thin rod called a torsion rod, one of which is placed in the fluid as a detector. When rotational vibration is applied with the longitudinal direction of the torsion rod as the axis of rotation, the torsion rod is subjected to external torsional force because the measuring element in the viscous liquid is resisted by the inertia mass in the air.

The measuring principle of the In-Line Viscometer is to calculate the change in amplitude of vibration between the inertial mass in air and the measuring element in liquid as the change in viscosity. The vibration of the torsion rod is generated using a ceramic actuator or similar device. Ceramic actuators are also called piezoelectric (piezoelectric) actuators and have a property called the piezoelectric effect, whereby they deform and generate a voltage when an external force is applied.

In-Line Viscometer Structure

An In-Line Viscometer consists of two parts: a measuring section that is connected to the inside of a pipe or tank, and an operating and display section that calculates and outputs the viscosity.

The measuring section has a housing for connection to piping, and inertia masses of the same size are installed in the housing at the top and bottom. The upper inertia mass is immersed in air and the lower inertia mass is immersed in liquid, and each is subjected to different resistance when measuring viscosity.

The thin rod connecting the two inertia masses is a torsion rod. The torsion rod is subjected to a torsional force depending on the magnitude of the viscosity of the liquid. There is a drive unit to apply torsional vibration to the inertia mass and the torsion rod, to which a ceramic actuator is attached.

Other Information on In-Line Viscometer

Definition of Viscosity

Viscosity is described in terms of a liquid sandwiched between two plates. First, when one of the two plates is fixed and the other is shifted horizontally at a certain speed, the relative speed of the two plates divided by the distance between them is the shear rate.

The resisting force from the frictional force generated between the two plates is called the shear stress. Viscosity of a liquid is defined as the coefficient μ when shear rate V and shear stress τ are applied to the following equation (μ = τ/V).

Viscosity is not always constant regardless of shear rate. Fluids whose viscosity remains constant regardless of shear rate are called “Newtonian fluids” and those whose viscosity is not constant are called “non-Newtonian fluids. Non-Newtonian fluids are further classified into three categories based on their characteristics: plastic fluids, quasi-plastic fluids, and dilatant fluids.

カテゴリー
category_usa

Index Plunger

What Is an Index Plunger?

An index plunger is a mechanical component used for precisely fixing or positioning a workpiece. It features a pin that inserts into a hole or groove to securely lock the workpiece in place and can be easily released or detached via a knob.

Uses of Index Plungers

These plungers are used for positioning, indexing, and adjusting slides in various industries, including machine tools, packaging machinery, and food machinery. They are particularly effective in positioning workpieces on stages or tables where precise alignment is required.

Principle of Index Plungers

Index plungers operate by manually inserting and removing a pin at their tip. The knob controls the pin’s depth, allowing for quick engagement or disengagement. Most models feature a built-in spring for easy positioning, and some come with locks to secure the pin in a sunken position.

Types of Index Plungers

Index plungers come in various designs, including:

  • Ring Type: Uses a tilting ring for operation.
  • T-Shape Knob Type: Known for ease of use and grip.
  • Without T-Knob Type: Adaptable for automation with levers or air cylinders.
  • Special Knob Type: Operated by turning a knob.
  • Compact Type: Suitable for limited spaces.
  • Flange Type: Ideal for mounting on equipment walls.
  • Button Type: Operates via a push button.
  • Lever Type: Uses a lever for pin insertion/removal.
  • Pin Removable Type: Allows for easy pin replacement or modification.
  • Push Type: The pin retracts on pushing and stores inside when released.

How to Select an Index Plunger

When selecting an index plunger, consider the pin tip shape (spherical or tapered), the type of operation (return or rest position), and the pin tip’s shape for ease of positioning. Additionally, ensure the shear load of the pin can support the perpendicular load if used for load-bearing applications.

Structure of Index Plungers

Index plungers typically have a spring-assisted pin that moves in the direction of the knob operation—retracting when the knob is pulled and extending when pushed. This design allows for quick and efficient positioning or releasing of the workpiece.