カテゴリー
category_de

Raumheizungen

Was ist eine Raumheizung?

Raumheizungen werden in Infrastruktureinrichtungen wie Computern, Telefonen und anderen Telekommunikationsgeräten, in der Stromerzeugung und -übertragung sowie in neuen Energiequellen eingesetzt, nicht nur um witterungsbedingte Kondensation zu verhindern, sondern auch um die Temperatur von Zielgeräten wie Computern auf den garantierten Betriebsbereich zu erwärmen. Der Begriff “Heizgerät” bezieht sich auf ein Heizgerät, das nicht nur dazu dient, witterungsbedingte Kondensation zu verhindern, sondern auch die Temperatur von Zielgeräten, wie z. B. Computern, auf den garantierten Betriebsbereich zu erwärmen.

Sie spielen eine besonders wichtige Rolle, da Kondensation der natürliche Feind von Elektro- und Computergeräten ist.

Verwendungszwecke von Raumheizungen

Raumheizungen sind häufig in Gehäusen zu finden, in denen sich elektronische Geräte befinden, z. B. in Schalttafeln und Verteilertafeln, die in Städten häufig im Freien aufgestellt sind.

Sie werden auch in Gebieten eingesetzt, in denen die Temperaturen unter den Gefrierpunkt fallen, um die Umgebungstemperaturen bis zum Betriebsbereich der elektronischen Geräte zu halten.

Raumheizungen eignen sich am besten für die Beheizung von Plattenobjekten.

Prinzip der Raumheizungen

Raumheizungen sind eine Art von Heizgeräten, die in engem Kontakt mit der Oberfläche des zu beheizenden Objekts, z. B. einem Metall, verwendet werden, das von dem Metall bedeckt oder umschlossen ist.

Im Vergleich zu Silikonkautschuk-Heizgeräten für ähnliche Anwendungen haben Raumheizgeräte einen größeren Temperaturbereich und können einen höheren Heizwert liefern.

Raumheizungen sind dünne Plattenheizungen mit einem Heizelement aus Nichromdraht, das mit einer hitzebeständigen Glimmerplatte isoliert ist.

Die äußere Platte besteht aus rostfreiem Stahlblech (SUS 430) oder gebondetem Stahlblech, und das Heizelement ist mit einer Schutzschicht überzogen.

Man kann sagen, dass die Heizelemente dieser Raumheizungen äußerst effizient heizen, da sie die Wärme durch direkte Wärmeleitung direkt auf das zu beheizende Objekt übertragen.

Um die Heizleistung zu erhöhen, wird häufig ein enger Kontakt zwischen Ober- und Unterseite hergestellt.

Darüber hinaus werden einige Raumheizungen in Kombination mit einem Gebläse betrieben, das die Umgebungstemperatur durch Umwälzung der erwärmten Luft effizient aufrechterhält, und Raumheizungen werden manchmal zur Lufterwärmung eingesetzt, um beispielsweise Kondensation zu verhindern.

Die Standardtypen von Raumheizungen sind Doppel- und Einzelheizungen, aber es gibt auch vertikale Einzelheizungen, horizontale Einzelheizungen, Zentralheizungen, bedrahtete Heizungen, direkt bedrahtete Heizungen und verschiedene andere Typen, je nach Installationsort und Spezifikationen der Raumheizung.

カテゴリー
category_es

Analizadores de Potencia

¿Qué es un Analizador de Potencia?

Un analizadores de potencia es un dispositivo para medir la potencia generada por un equipo eléctrico. Al medir la potencia, es posible comprobar la eficiencia de conversión de la energía y cualquier fallo en el equipo debido a caídas de tensión.

La potencia en sí puede medirse con un vatímetro sin necesidad de un analizadores de potencia. Sin embargo, la posibilidad de medir otros parámetros además de la potencia, como la tensión, la corriente y la frecuencia, es una ventaja que no tienen los medidores de potencia.

En la pantalla de visualización de resultados existen varios canales. Ajustando los canales, sólo se pueden visualizar los parámetros necesarios.

Usos de los Analizadores de Potencia

Se utilizan para medir la eficiencia de la generación de energía a partir de fuentes de energía naturales, como la solar y la eólica.

La generación de electricidad a partir de fuentes de energía naturales, como la solar y la eólica, se conoce como generación de energías renovables. El uso de energías renovables es cada vez más popular porque es respetuoso con el medio ambiente. Por otro lado, tiene la desventaja de que el suministro de energía depende del clima y, por tanto, es menos eficiente que, por ejemplo, la generación de energía térmica.

La medición de la eficiencia de la generación de energía confirma que la electricidad se suministra correctamente. También se realizan esfuerzos para garantizar la activación de sistemas de reserva en caso de que disminuya la eficiencia de la generación debido a la escasez de energía.

Principios de los Analizadores de Potencia

La potencia que mide un analizadores de potencia viene determinada por la ecuación entre la tensión y la corriente. No existen diferentes tipos de tensión, mientras que la corriente se divide en diferentes tipos en función de cómo fluye.

Corriente alterna
La dirección del flujo de corriente se denomina corriente alterna si el flujo no es constante en una dirección. La dirección del flujo se alterna cambiando entre corrientes positivas y negativas en diferentes momentos.

El momento de la alternancia depende de la frecuencia utilizada para el flujo de corriente. Cuanto mayor es la frecuencia, más a menudo se producen las alternancias.

Toda la electricidad que fluye de las centrales eléctricas a los hogares e instituciones es de corriente alterna. La CA tiene la ventaja sobre la CC de que puede transmitir electricidad a distancias más largas.

Corriente continua
Es un método en el que los lados positivo y negativo no se intercambian y la electricidad fluye en una sola dirección. La transmisión de energía mediante pilas secas corresponde al método de corriente continua. El sistema de corriente continua tiene una estructura sencilla y es fácil de entender.

La desventaja es que es difícil de desconectar. Es necesario interrumpir la corriente en caso de avería o mantenimiento, lo que resulta más difícil que con la corriente alterna.

Los analizadores de potencia pueden medir tanto corriente continua como alterna.

Características de los Analizadores de Potencia

Los analizadores de potencia tienen las siguientes características

  • Portabilidad: son compactos y ligeros, ya que a menudo son necesarios para realizar mediciones sobre el terreno, por ejemplo, en paneles solares. Esto se consigue utilizando tecnologías como la condensación en el motor de análisis de potencia de las funciones informáticas que antes se realizaban en hardware.
  • Adaptabilidad al entorno: el sistema está diseñado para realizar mediciones de alta precisión incluso en entornos con temperaturas adversas, como salas de temperatura constante y salas de máquinas en las que las temperaturas cambian rápidamente.
  • Transmisión de datos: el uso de adaptadores compatibles con tecnologías inalámbricas como Bluetooth permite transmitir los valores medidos a dispositivos como registradores de datos.
  • Interfaces: USB (memoria), LAN, GP-IB, RS-232C, control externo, sincronización de 2 unidades y varios estándares más.

Guía para Seleccionar un Modelo de Analizadores de Potencia

Los analizadores de potencia pueden dividirse en modelos de precio popular y modelos de gama alta en función del rango de precios. Los dos factores clave para elegir uno u otro son la precisión en la medición de potencia y el rango de frecuencias: los modelos de gama alta se utilizan cuando se miden rangos de frecuencia superiores a 100 kHz o que incluyen frecuencias inferiores a 1 Hz, o cuando se requiere un alto nivel de precisión en la medición. Los modelos adecuados para la medición de alta precisión de fenómenos con un amplio rango de variación (potencia en espera/plena potencia) y la medición de inversores y accionamientos de conmutación se seleccionan entre los modelos de precio popular ligeramente más caro (gama media) y los modelos de gama alta. En otros casos, pueden utilizarse modelos de precio popular.

Analizadores de Potencia Avanzados

Los analizadores de potencia realizan mediciones de potencia de alta precisión y, en los últimos años, diversos fabricantes han lanzado al mercado varios modelos avanzados.

Tipo Osciloscopio Integrado

Los analizadores de potencia convencionales no disponían de una función de observación de formas de onda, por lo que era necesario preparar un dispositivo de medición de formas de onda independiente, como un osciloscopio digital, etc. En 2015, se lanzó un tipo con un osciloscopio integrado de alta resolución, que permitía medir tanto la potencia como las formas de onda simultáneamente con una sola unidad. En la actualidad, varias empresas ofrecen tipos de osciloscopios integrados similares.

カテゴリー
category_fr

manomètre numérique

Qu’est-ce qu’un manomètre numérique ?

Les manomètres numériques sont des appareils de mesure de la pression.

Ils sont utilisés pour surveiller et contrôler la pression hydraulique et barométrique dans diverses machines industrielles, équipements et instruments d’analyse. Selon l’application, certains sont étanches. Le choix dépend du fluide (air sec, air brouillard, vapeur, huile, etc.) pour lequel la pression doit être mesurée et de la limite supérieure de la pression appliquée.

La méthode utilisée dans de nombreux capteurs de pression ces dernières années est que la pression est mesurée par une pièce appelée diaphragme, convertie en signal électrique et transmise à un moniteur.

Utilisations des manomètres numériques

Les manomètres sont utilisés dans les systèmes d’alimentation en gaz des semi-conducteurs, dans les machines et équipements de diverses industries telles que le pétrole, le papier et les produits chimiques, ainsi que dans les équipements d’analyse chimique. Par conséquent, la nature des fluides à mesurer varie. Il est nécessaire de choisir le capteur approprié en fonction de l’objet à mesurer (gaz, liquide, inflammable ou non, corrosif ou non).

La pression de référence (absolue ou atmosphérique) varie également d’un instrument à l’autre. Par ailleurs, il existe deux types d’instruments qui utilisent la pression atmosphérique comme référence : ceux qui mesurent la pression négative et ceux qui mesurent la pression positive.

Principe des manomètres numériques

Les manomètres utilisés ces dernières années mesurent la pression à l’aide d’un élément récepteur de pression appelé membrane. La pression reçue du fluide entraîne une légère déformation de la membrane. Il existe deux méthodes de mesure de la pression avec des membranes qui montrent la déformation et le changement de la membrane : le type de jauge de contrainte à semi-conducteur et le type de capacité.

1. Jauge de contrainte à semi-conducteur

Cette méthode utilise un élément de conversion électrique pour détecter la déformation de la membrane et mesurer la pression. Il existe trois types de jauges de contrainte à semi-conducteur en fonction de leur structure interne : les jauges de contrainte à semi-conducteur en vrac, les jauges de contrainte à semi-conducteur déposées en phase vapeur (couche mince) et les jauges de contrainte à semi-conducteur à diffusion.

Jauges de contrainte à semi-conducteur en vrac
Les jauges de contrainte à semi-conducteur sont utilisées en collant une jauge de contrainte à semi-conducteur à un diaphragme métallique.

Jauges de contrainte à semi-conducteur à dépôt (couche mince)
Un film mince de jauge de contrainte à semi-conducteur est formé directement sur un diaphragme métallique. Largement utilisées car il n’y a pas d’effet d’adhésion.

Jauges de contrainte à semi-conducteur à diffusion
Cette méthode utilise une plaquette de silicium monocristallin pour créer le diaphragme. Bien qu’elle ne puisse pas supporter des pressions élevées, elle peut être produite en masse et est peu coûteuse.

2. Jauge de type capacitif

Cette méthode utilise une électrode opposée au diaphragme pour capter le déplacement entre le diaphragme et l’électrode sous forme de capacité. Dans cette méthode, le diaphragme est en métal, en céramique ou en silicium.

Comment choisir un manomètre numérique ?

Lors du choix d’un manomètre numérique, il convient de prendre en compte les éléments suivants :

1. Plage de mesure

Le facteur le plus important dans le choix d’un manomètre numérique est de savoir s’il correspond à la plage de pression que vous souhaitez mesurer. Comme les plages de pression varient en fonction du type de fluide, il est nécessaire de vérifier à l’avance si le manomètre peut mesurer dans la plage adaptée à l’usage auquel il est destiné.

2. Précision de la mesure

La précision de la mesure n’est pas toujours importante pour les manomètres, en fonction de l’objectif et de l’application. En revanche, dans les applications industrielles de pointe ou dans les environnements exigeants, une grande précision peut être requise et il doit être clair que les valeurs mesurées sont destinées à être utilisées.

3. Affichage

Veillez à ce que les valeurs mesurées soient faciles à lire. L’essentiel est de choisir un écran avec un affichage numérique clair et des unités et valeurs faciles à lire. Un écran rétroéclairé est également utile dans les environnements sombres.

4. Opérabilité et facilité d’utilisation

Il est important de choisir un manomètre numérique dont la disposition des boutons et la structure des menus sont claires et dont l’utilisation est intuitive. Il est préférable qu’il soit doté d’une interface conviviale et qu’il soit facile à configurer et à lire les données.

5. Alimentation électrique et durée de vie de la batterie

Les manomètres numériques nécessitent une alimentation électrique, et il est important de vérifier l’état des options d’alimentation, telles que le fonctionnement sur batterie ou la compatibilité avec l’adaptateur secteur, en fonction de l’environnement dans lequel ils seront utilisés. Il est également important de choisir un produit doté d’une longue durée de vie de la batterie et d’un temps de recharge court, d’où l’importance de prévoir les situations dans lesquelles vous l’utiliserez.

カテゴリー
category_usa

Isocyanic Acid

What Is Isocyanic Acid?

Isocyanic acid is an organic compound with the chemical formula HNCO. It exists primarily as a colorless gas at room temperature and pressure but can also be found in liquid form. Isocyanic acid has two isomers: cyanic acid and fulminic acid, and it can readily convert to cyanic acid.

Isocyanic acid can be synthesized by reacting cyanic acid with an acid, which leads to the addition of a hydrogen ion. Another method involves the thermal decomposition of cyanuric acid, a substance derived from urea.

Isocyanic acid is soluble in organic solvents such as benzene and is slightly soluble in water.

Uses of Isocyanic Acid

Isocyanic acid has various derivatives, one of the main ones being methyl isocyanate. Methyl isocyanate is known for its application in chemical industries but requires careful handling due to its toxic nature. The tragic incident in Bhopal, India in 1984 involving a methyl isocyanate leak from a carbaryl plant, which resulted in numerous fatalities, underscores the critical importance of stringent safety measures in chemical manufacturing and storage.

カテゴリー
category_usa

Isobutyric Acid

What Is an Isobutyric Acid?

Isobutyric acid is an organic compound with the chemical formula C4H8O2 and the characteristic formula (CH3)2CHCOOH.

It is one of the structural isomers of butyric acid, a volatile aliphatic carboxylic acid. Its IUPAC nomenclature is 2-methylpropanoic acid, and its CAS number is 79-31-2.

Uses of Isobutyric Acids

In the chemical field, isobutyric acids are used for the synthesis of isobutyric esters such as methyl isobutyrate, propyl ester, isoamyl ester, and benzyl ester, and the production of isobutyronitrile intermediate.

It is also used in the food industry as an edible flavor. Specifically, it is mainly used in the production of butter, apples, caramel, cheese, bread, and yeast. Other uses include the production of perfumes and perfume esters, pharmaceuticals, solvents for paints, disinfectants, varnishes, plasticizers, leather, and tanning agents.

Properties of Isobutyric Acids

Basic information on isobutyric acid

Figure 1. Basic Information on Isobutyric Acids

Isobutyric acids have a molecular weight of 88.11, a melting point of -47°C, and a boiling point of 154°C. It is a colorless liquid at room temperature. it has an unpleasant rancid buttery odor similar to that of n-butyric acid.

It has a density of 0.950 g/mL and an acid dissociation constant pKa of 4.84. It is extremely soluble in organic solvents such as ethanol and ether and dissolves in 6 times as much water.

Types of Isobutyric Acids

Isobutyric acids are generally sold as reagent products for research and development and as flavoring agents (food additives). In R&D reagent products, isobutyric acid is available in 25mL, 100mL, and 500mL volumes, and is usually supplied in volumes that are easy to handle in the laboratory.

They are handled as reagent products that can be stored at room temperature. For those sold as food additives or flavorings, individual inquiries to the manufacturer are required.

Other Information on Isobutyric Acids

1. Synthesis of Isobutyric Acids

Example of synthesis of isobutyric acid

Figure 2. Example of Synthesis of Isobutyric Acids

Isobutyric acids can be synthesized by oxidizing isobutyl alcohol with an appropriate oxidant (potassium dichromate/sulfuric acid conditions, etc.). This is done via isobutyraldehyde as an intermediate.

Other methods include the hydrocarboxylation of propylene (Koch reaction). Industrially, isobutyric acids are a byproduct of n-butanol production.

Laboratory methods include hydrolysis of isobutyl nitrile under basic conditions to obtain isobutyl alcohol, followed by oxidation, and direct treatment of methacrylic acid with sodium amalgam (Na(Hg)) to obtain isobutyric acids.

2. Chemical Reaction of Isobutyric Acids

Examples of derivatives of isobutyric acid

Figure 3. Examples of Derivatives of Isobutyric Acids

Isobutyric acids show the typical reactivity seen in carboxylic acids in general, yielding derivatives such as amides (-CONH2), acid anhydrides (-CO-O-CO-), and acid chlorides (-COCl). Reaction with chromic acid produces acetone. The substance obtained by oxidizing isobutyric acids with potassium permanganate under basic conditions is α-hydroxyisobutyric acid. 

3. Hazardous Properties and Precautions for Handling Isobutyric Acids

Isobutyric acids have various hazardous properties and are classified by the GHS classification as follows

  • Inflammable liquid: Category 3
  • Acute toxicity (oral): Category 3
  • Acute toxicity (dermal): Category 3
  • Skin corrosion/irritation: Category 1
  • Serious eye damage/eye irritation: Category 1
  • Specific target organ toxicity (single exposure): Category 3
  • Airway irritation: Category 3
  • Hazardous to the aquatic environment (acute): Category 3
  • Hazardous to the aquatic environment (chronic): Category 3

Isobutyric acids may be altered by light. Avoid high temperatures, direct sunlight, heat, flames, sparks, static electricity, and sparks. Strong oxidizers are listed as a miscibility hazard. Hazardous decomposition products are carbon monoxide and carbon dioxide. 

4. Regulatory Information for Isobutyric Acids

Isobutyric acids are regulated by law due to their hazardous properties. Under the Fire Service Act, it is classified as a hazardous material, Class IV, Petroleum No. 2, Hazardous Rank III, and under the Industrial Safety and Health Act, it is classified as a hazardous material and flammable substance. It must be handled correctly in compliance with laws and regulations.

カテゴリー
category_usa

Isovaleric Acid

What Is an Isovaleric Acid?

Isovaleric-Acids_イソ吉草酸-1.

Figure 1. Basic information on isovaleric acids

Isovaleric acids are isomeric forms of valeric acid, an organic acid with the chemical formula C5H10O2.

It is also called 3-methylbutanoic acid. It has a pungent odor with an unpleasant sensation and is regulated as a specified malodorous substance under the Malodor Prevention Law. The ester of isovaleric acids, however, has a pleasant aroma.

Naturally, isovaleric acid is found in essential oils of plants such as cypress, geranium, rosemary, and lemongrass, as well as in fruits such as apples and grapes.

Uses of Isovaleric Acids

Isovaleric acids are a malodorous component of body odor, etc. Isovaleric acid ester has a pleasant aroma and is used as a flavoring component in non-alcoholic beverages and foods such as ice cream, baked goods, and cheese. It can also be used as a flavoring ingredient in perfumes.

Isovaleric acids are also widely used as a chemical intermediate in the manufacture of sedatives and other pharmaceuticals.

Additionally, it is used as an extractant of mercaptan from petroleum hydrocarbons, as a vinyl stabilizer, and as an intermediate in the manufacture of plasticizers and synthetic lubricants.

Properties of Isovaleric Acids

Isovaleric acids have a melting point of -29°C and a boiling point of 175-177°C. It is slightly soluble in water and dissolves well in many organic solvents.

Isovaleric acids are volatile. It is a liquid with an acidic, unpleasant, rancid cheese-like odor and is a causative agent of odors such as sweat, foot odor, and age-related odors.

Structure of Isovaleric Acids

Isovaleric acids have a molar mass of 102.13 g/mol and a density of 0.925 g/cm3. The specific formula is expressed as (CH3)2CHCH2CO2H. It is present at physiological pH in biological systems in the form of (CH3)2CHCH2COO, the isovaleric acid ion.

Isovaleric acids are isomers of the branched structure of Yoshric Acid. Pivalic acid and hydroangelic acid also exist as structural isomers. Pivalic acid is also called pivalic acid trimethylacetic acid and neopentanoic acid.

Other Information on Isovaleric Acids

1. Synthesis of Isovaleric Acids

Isovaleric-Acids_イソ吉草酸-2.

Figure 2. Synthesis of isovaleric acids

Isovaleric acids are a trace constituent of Valerian and are named isovaleric acids. The dried roots of Valerian have been used medicinally since ancient times, and research into isovaleric acids first began in the 19th century with the oxidation of components of fusel oil (Fusel alcohol) containing amyl alcohol.

Industrially, isovaleraldehyde is formed by the hydroformylation of isobutylene, which is oxidized to yield isovaleric acids.

2. Reaction of Isovaleric Acids

Isovaleric-Acids_イソ吉草酸-3

Figure 3. Reaction of Isovaleric Acids

In general, isovaleric acids react as carboxylic acids to form amides, esters, anhydrides, and chloride derivatives. Acid chlorides are widely used as synthetic intermediates.

Fermentation of isovaleric acid by the fungus Galactomyces reessii yields 3-hydroxyisovaleric acids. Hydroxy-β-methylbutyrate is another name for 3-hydroxyisovaleric acid.

3. Structural Isomers of Isovaleric Acids

Isovaleric acid is a linear carboxylic acid, a colorless liquid with the specific formula CH3(CH2)3COOH. It has a density of 0.94 g/cm3, a melting point of -34.5°C, and a boiling point of 186-187°C. It is the lowest molecular weight carboxylic acid soluble in non-polar solvents rather than polar solvents. It is a weak acid with a pKa of 4.82 and is corrosive to the human body.

Pivalic acid is a carboxylic acid with a tert-butyl group. It has a density of 0.905 g/cm3, a melting point of 35.5°C, and a boiling point of 163.8°C. It is a colorless liquid or white crystal with a pungent odor. pKa is 5.01 and the aqueous solution is slightly acidic.

The specific formula of hydroangelical acid is C2H5(CH3)CHCOOH. Hydroangelical acid has mirror isomers. It has a density of 0.94 g/cm3, a melting point of -90°C, and a boiling point of 176°C.

カテゴリー
category_usa

Isobutyraldehyde

What Is Isobutyraldehyde?

Isobutyraldehyde, an organic compound, has the molecular formula C4H8O and the structural formula (CH3)2CHCHCHO. Its IUPAC nomenclature is 2-methylpropanal, and its CAS number is 78-84-2. The compound has a molecular weight of 72.11, a melting point of -66°C, and a boiling point of 65°C. At room temperature, it presents as a clear, colorless liquid with an unpleasant odor.

Isobutyraldehyde is highly soluble in water, ethanol, and acetone. Its density is 0.794 g/mL, and it has a water solubility of 11 g/100mL.

Uses of Isobutyraldehyde

Isobutyraldehyde is primarily used in organic synthesis, particularly as a raw material for neopentyl glycol (NPG) and isobutanol. Neopentyl glycol is utilized in alkyd resin paints, polyester resins, and powder coatings due to its thermal and chemical stability. Isobutanol, derived from isobutyraldehyde, is a versatile solvent and is used in the production of paint resins, isobutyl acrylate, isobutyl acetate, isobutyl methacrylate, and thinners.

Additionally, isobutyraldehyde serves as a synthetic raw material for isobutylidenediurea, DL-pantolactone, texanol, and diisopropyl ketone.

Properties of Isobutyraldehyde

Isobutyraldehyde, a derivative of isobutane, shares a structural similarity with butyraldehyde. It has a low flash point of -17.5℃ and an ignition point of 196℃, classifying it as a highly flammable liquid or vapor. It decomposes upon heating or combustion, emitting irritating smoke and fumes. Due to its reactivity with oxidants, strong reducing agents, and strong bases, careful storage is necessary to prevent hazardous reactions.

Chemically, isobutyraldehyde can be reduced to isobutanol. It participates in the aldol reaction with formaldehyde to synthesize neopentyl glycol, and its oxidation yields methacrolein and methacrylic acid.

Types of Isobutyraldehyde

Isobutyraldehyde is available on the market as a reagent product for research and development, as well as industrial chemical products. Research products are offered in volumes of 25 mL, 100 mL, 500 mL, 1 L, and require refrigerated storage. Industrial products, suited for uses such as solvent and resin raw materials, are sold in larger quantities like tankers and drums to accommodate factory and facility demands.

Other Information on Isobutyraldehyde

1. Synthesis of Isobutyraldehyde

Isobutyraldehyde can be synthesized via the hydroformylation of propylene.

カテゴリー
category_usa

Micronized Sulfur

What Is Micronized Sulfur?

Micronized sulfur is a type of pesticide that is classified as a fungicide.

As the name suggests, its main ingredient is sulfur (element symbol: S). Sulfur is well known for its use in hot springs and as a raw material for making rubber and matches, but it is also an element used in the agricultural industry for its function as a pesticide and for lowering the pH of the soil.

Micronized sulfur Floorable is made by suspending fine particles of sulfur in water. As a fine-particle formulation (floorable), it is characterized by the fact that the pesticide does not show up on leaves and fruits when sprayed.

In addition, because it is not counted in the number of times pesticides are applied, it can be used on specially cultivated crops (crops grown with reduced use of chemical fertilizers and pesticides) and is also effective in pest control. Micronized sulfur is not inflammable or flammable and is not classified as a hazardous material.

Uses of Micronized Sulfur

Micronized sulfur is used for two purposes: as a fungicide to prevent and treat diseases such as powdery mildew and rust on crops, and as an insecticide to control mites such as rust mites and dust mites.

1. Fungicide

Micronized sulfur is used as a fungicide to prevent and treat diseases of vegetables and fruit trees. Micronized sulfur, the main component of micronized sulfur, interferes with the action of enzymes called SH enzymes in fungi and microorganisms and inhibits their energy metabolism, thus producing a fungicidal effect. In the mechanism of action classification of pesticides, it is classified as M2 (multiple-action contact activity).

Micronized sulfur as a fungicide is effective against brown spot and black star diseases of fruit trees such as peaches, apples, and oysters, and against vegetable crops such as eggplant and cucumbers, green onion and strawberry powdery mildew, and green onion and buckwheat rust. To use, dissolve it in water and spray it on crops. The dilution factor varies depending on the crop, but a dilution of 300 to 1,000 times is generally recommended.

It can be used for both disease prevention and treatment.

2. Insecticides

Micronized sulfur Sulfur is also used as an insecticide to control pests on vegetables and fruit trees. As an insecticide, micronized sulfur can be useful against the mandarin orange rust mite on citrus fruits, the chanofossilid mite, and the tomato rust mite on tomatoes and mini-tomatoes.

It is dissolved in water and sprayed on crops. The dilution factor is often set at 400 times. The time of use is the early stage of a pest outbreak, making it suitable for the control of pests during this period.

Characteristics of Micronized Sulfur

Pros

  • Since it is in the form of a floorable, there is little powdering or foaming when diluted.
  • Since it adheres evenly to crops, there is less staining on leaves and fruits.
  • It can be used even by those who are registered as organic crop growers.
  • It can be used in both preventive and curative situations.
  • Can be used because it is registered against the less common buckwheat disease.

Cons

  • Costly chemicals and spraying equipment. It is necessary to consider whether the cost is worth the effectiveness of the product before using it.
  • Chemical damage may occur on hot days or in greenhouses with high room temperatures.

Other Information on Micronized Sulfur

Precautions for Use

  • When spraying, gloves and masks should be worn and care should be taken to avoid direct contact with the eyes, nose, and skin.
  • Mixed use with lime sulfur compound, Bordeaux solution, or machine oil emulsion should be avoided. Spraying in close proximity within 14 days after machine oil emulsion application should also be avoided.
  • Since the components may separate during storage, they should be mixed before use.
  • Since it affects silkworms, care should be taken when spraying if there are mulberry leaves in the vicinity.
カテゴリー
category_usa

Ammonium

What Is Ammonium?

Ammonium (NH4+) is a polyatomic ion formed from ammonia (NH3). Ammonium is created when ammonia molecules in an aqueous solution gain a hydrogen ion.

In aqueous solutions, ammonia and ammonium exist in equilibrium, depending on the pH of the solution. Ammonium ionically bonds with ions like chloride and carbonate to form salts such as ammonium chloride and ammonium carbonate.

Uses of Ammonium

Ammonium is produced when animals metabolize ammonia. It is toxic to animals, so it is converted to other substances, like urea, for safe excretion.

In humans, ammonium is transformed into urea in the liver via the urea cycle and then excreted in urine by the kidneys. This excreted urea becomes a nutrient source for microorganisms and plants, thus playing a vital role in the nitrogen cycle of ecosystems.

カテゴリー
category_usa

Amphetamine

What Is Amphetamine?

Amphetamine is a chemical compound with the chemical formula C9H13N. Its molecular weight is 135.2084.

Amphetamine, also known as benzedrine, is a colorless liquid at room temperature with a characteristic amine odor in its base form. It is insoluble in water but soluble in ether and ethyl alcohol. Amphetamine sulfate, a common salt form of the drug, appears as a white crystalline substance and is highly soluble in water.

Uses of Amphetamine

Clinically, amphetamine is often administered in the form of its sulfate or phosphate salts. It primarily acts as an indirect adrenergic agonist, stimulating the release of neurotransmitters.

Amphetamine is indicated for the treatment of attention-deficit/hyperactivity disorder (ADHD) and narcolepsy.