チャージアンプとは
チャージアンプとは、計測が難しい圧電式センサなどから発生する非常に小さな電荷信号を、比例した電圧信号に変換する処理を行うアンプです。
圧電式センサから発生する電荷信号は、圧電式センサに加えられた圧力に正確に比例するため、この値を正確計測することは非常に有意義です。チャージアンプは、圧力センサが発生した電荷信号を正確に電荷に比例した電圧に変換できます。
チャージアンプの使用用途
1. 圧電式センサの増幅
チャージアンプは、圧電式センサで測定を行う際に使用されます。チャージアンプは圧電式センサーを設置する場所が狭い場所や環境温度が高い環境等で使用します。これは圧電式センサはセンサーが小型で、中には耐熱性が高い特徴を持ち、上記の環境で測定することが多いためです。
また、チャージアンプは応答性が必要な計測にも最適です。圧電式センサは微小の変位を計測するため合成の高いセンサを製造することができます。計測した微小の変位をチャージアンプで増幅するために使用されます。
2. その他
比例計数管やシンチレーションカウンタなど、電離放射線を測定する機器に広く使用されています。これらの機器は、電離現象での放射線を検出して、各パルスのエネルギーを測定しています。
チャージアンプを用いると検出器からの電荷パルスを電圧出力に変換して、各パルスごとの測定が可能です。
チャージアンプの原理
既に述べたように圧電式センサは圧力が加えられると微小電荷が発生します。この微小電荷を測定可能な電圧に変換するのがチャージアンプの役目です。
1. 電荷変換
チャージアンプは、圧電センサから印加される圧力に比例した負の電荷出力を正の比例電圧に変換しています。現代のチャージアンプでは、この信号をそのままデジタル形式として利用することも可能です。
電荷を電圧信号に変換することで、データ処理する計測器 (DAQ、FFTアナライザ、オシロスコープなど) に入力できる信号になります。
2. 増幅機構
チャージアンプが微小電荷から電圧に変換する際は、積分増幅器を用います。積分増幅器のコンデンサ容量をCgとし微小電荷の電荷をQとすると、電圧VはV = Q / Cgで求められます。
チャージアンプの積分増幅器の構成は、オペアンプとコンデンサからなる回路です。コンデンサに入る電流を時間積分して、電荷を増幅する回路となっています。
入力の電荷は全てコンデンサにチャージされます。チャージアンプの積分増幅器とよく似た回路に、積分回路があります。これは入力に電流・電圧変換回路である抵抗を付与した回路です。電圧を時間積分して増幅する特徴を持っています。
3. ノイズ除去・保護機能
チャージアンプの中には出力箇所にハイパスフィルタやローパスフィルタを設けており、ノイズ除去を行っています。また、チャージアンプの増幅回路の入力に抵抗が付いている場合もあります。その抵抗は電流・電圧変換が目的ではなく、過大な入力信号に対する保護を目的とした抵抗です。
チャージアンプの選び方
実際には正確な測定を行うためには、測定対象により適切なチャージアンプを選択することが非常に重要です。チャージアンプを選定するにあたり、重要な観点を以下に述べます。
1. 測定チャンネルの数
測定箇所が複数ある場合には、測定チャンネルが複数無いと測定ができません。測定チャンネルが不足している場合は、もちろんチャージアンプを買い増せば測定は可能ですが、コストも調整作業も複雑になるためメリットは少ないです。
2. 入力可能な電荷信号の大きさ
圧電式センサの電荷信号の大小に対応しているかどうかも重要なポイントです。当然測定レンジが一致していなければ測定はできませんが、今後の測定計画を見据えた測定レンジのチャージアンプを導入する必要があります。
参考文献
https://www.kistler.com/ja/glossary/term/charge-amplifiers/